Cargando…

Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures

High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinostroza, Fernando, Neely, Alan, Araya-Duran, Ingrid, Marabolí, Vanessa, Canan, Jonathan, Rojas, Maximiliano, Aguayo, Daniel, Latorre, Ramón, González-Nilo, Fernando D., Cárdenas, Ana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584598/
https://www.ncbi.nlm.nih.gov/pubmed/33097808
http://dx.doi.org/10.1038/s41598-020-75216-0
_version_ 1783599627766857728
author Hinostroza, Fernando
Neely, Alan
Araya-Duran, Ingrid
Marabolí, Vanessa
Canan, Jonathan
Rojas, Maximiliano
Aguayo, Daniel
Latorre, Ramón
González-Nilo, Fernando D.
Cárdenas, Ana M.
author_facet Hinostroza, Fernando
Neely, Alan
Araya-Duran, Ingrid
Marabolí, Vanessa
Canan, Jonathan
Rojas, Maximiliano
Aguayo, Daniel
Latorre, Ramón
González-Nilo, Fernando D.
Cárdenas, Ana M.
author_sort Hinostroza, Fernando
collection PubMed
description High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes.
format Online
Article
Text
id pubmed-7584598
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75845982020-10-27 Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures Hinostroza, Fernando Neely, Alan Araya-Duran, Ingrid Marabolí, Vanessa Canan, Jonathan Rojas, Maximiliano Aguayo, Daniel Latorre, Ramón González-Nilo, Fernando D. Cárdenas, Ana M. Sci Rep Article High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes. Nature Publishing Group UK 2020-10-23 /pmc/articles/PMC7584598/ /pubmed/33097808 http://dx.doi.org/10.1038/s41598-020-75216-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hinostroza, Fernando
Neely, Alan
Araya-Duran, Ingrid
Marabolí, Vanessa
Canan, Jonathan
Rojas, Maximiliano
Aguayo, Daniel
Latorre, Ramón
González-Nilo, Fernando D.
Cárdenas, Ana M.
Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title_full Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title_fullStr Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title_full_unstemmed Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title_short Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures
title_sort dynamin-2 r465w mutation induces long range perturbation in highly ordered oligomeric structures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584598/
https://www.ncbi.nlm.nih.gov/pubmed/33097808
http://dx.doi.org/10.1038/s41598-020-75216-0
work_keys_str_mv AT hinostrozafernando dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT neelyalan dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT arayaduraningrid dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT marabolivanessa dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT cananjonathan dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT rojasmaximiliano dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT aguayodaniel dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT latorreramon dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT gonzaleznilofernandod dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures
AT cardenasanam dynamin2r465wmutationinduceslongrangeperturbationinhighlyorderedoligomericstructures