Cargando…
Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures
Previous studies have shown that each edible oil type has its own characteristic fatty acid profile; however, no method has yet been described allowing the identification of oil types simply based on this characteristic. Moreover, the fatty acid profile of a specific oil type can be mimicked by a mi...
Autores principales: | Lim, Kevin, Pan, Kun, Yu, Zhe, Xiao, Rong Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584611/ https://www.ncbi.nlm.nih.gov/pubmed/33097723 http://dx.doi.org/10.1038/s41467-020-19137-6 |
Ejemplares similares
-
Spectroscopic and Thermal Characterization of Extra Virgin Olive Oil Adulterated with Edible Oils
por: Chavez-Angel, Emigdio, et al.
Publicado: (2022) -
Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration
por: Su, Ning, et al.
Publicado: (2021) -
Identification and Validation of Metabolic Markers for Adulteration Detection of Edible Oils Using Metabolic Networks
por: Dou, Xinjing, et al.
Publicado: (2020) -
Paka Oil in Mustard Oil as an Adulterant
por: Bose, Chunilal, et al.
Publicado: (1919) -
Adulteration of Cod-Liver Oil
Publicado: (1849)