Cargando…
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
LiDAR-based Simultaneous Localization And Mapping (SLAM), which provides environmental information for autonomous vehicles by map building, is a major challenge for autonomous driving. In addition, the semantic information has been used for the LiDAR-based SLAM with the advent of deep neural network...
Autores principales: | Cho, Sungjin, Kim, Chansoo, Park, Jaehyun, Sunwoo, Myoungho, Jo, Kichun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588973/ https://www.ncbi.nlm.nih.gov/pubmed/33086561 http://dx.doi.org/10.3390/s20205900 |
Ejemplares similares
-
Rapid Motion Segmentation of LiDAR Point Cloud Based on a Combination of Probabilistic and Evidential Approaches for Intelligent Vehicles
por: Jo, Kichun, et al.
Publicado: (2019) -
Simultaneous Localization and Map Change Update for the High Definition Map-Based Autonomous Driving Car
por: Jo, Kichun, et al.
Publicado: (2018) -
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS
por: de Miguel, Miguel Ángel, et al.
Publicado: (2020) -
Cloud Update of Tiled Evidential Occupancy Grid Maps for the Multi-Vehicle Mapping
por: Jo, Kichun, et al.
Publicado: (2018)