Cargando…
A Robust INS/SRS/CNS Integrated Navigation System with the Chi-Square Test-Based Robust Kalman Filter
In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588989/ https://www.ncbi.nlm.nih.gov/pubmed/33086757 http://dx.doi.org/10.3390/s20205909 |
Sumario: | In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-based velocity measurement equation in the INS/SRS/CNS system is derived. Furthermore, a new chi-square test-based robust Kalman filter (CSTRKF) is also proposed in order to improve the robustness of the INS/SRS/CNS navigation system. In the CSTRKF, the chi-square test (CST) not only detects measurements with outliers and in non-Gaussian distributions, but also estimates the statistical characteristics of measurement noise. Finally, the results of our simulations indicate that the INS/SRS/CNS integrated navigation system with the CSTRKF possesses strong robustness and high reliability. |
---|