Cargando…

Atropisomerism in Diarylamines: Structural Requirements and Mechanisms of Conformational Interconversion

In common with other hindered structures containing two aromatic rings linked by a short tether, diarylamines may exhibit atropisomerism (chirality due to restricted rotation). Previous examples have principally been tertiary amines, especially those with cyclic scaffolds. Little is known of the str...

Descripción completa

Detalles Bibliográficos
Autores principales: Costil, Romain, Sterling, Alistair J., Duarte, Fernanda, Clayden, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589358/
https://www.ncbi.nlm.nih.gov/pubmed/32633101
http://dx.doi.org/10.1002/anie.202007595
Descripción
Sumario:In common with other hindered structures containing two aromatic rings linked by a short tether, diarylamines may exhibit atropisomerism (chirality due to restricted rotation). Previous examples have principally been tertiary amines, especially those with cyclic scaffolds. Little is known of the structural requirement for atropisomerism in structurally simpler secondary and acyclic diarylamines. In this paper we describe a systematic study of a series of acyclic secondary diarylamines, and we quantify the degree of steric hindrance in the ortho positions that is required for atropisomerism to result. Through a detailed experimental and computational analysis, the role of each ortho‐substituent on the mechanism and rate of conformational interconversion is rationalised. We also present a simple predictive model for the design of configurationally stable secondary diarylamines.