Cargando…
Differential involvement of caspase-6 in amyloid-β-induced fragmentation of lamin A and B
Amyloid-β (Aβ), a peptide implicated in Alzheimer's disease, was shown to cause specific fragmentation of lamin proteins, which was mediated by an unidentified protease named nuclear scaffold protease (NSP) independently of caspase-6. Because caspase-6 is responsible for the fragmentation proce...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591731/ https://www.ncbi.nlm.nih.gov/pubmed/33145443 http://dx.doi.org/10.1016/j.bbrep.2020.100839 |
Sumario: | Amyloid-β (Aβ), a peptide implicated in Alzheimer's disease, was shown to cause specific fragmentation of lamin proteins, which was mediated by an unidentified protease named nuclear scaffold protease (NSP) independently of caspase-6. Because caspase-6 is responsible for the fragmentation process in many other damage-induced apoptosis, here we further investigated possible involvement of caspase-6 in Aβ-induced lamin fragmentation under various conditions. We found that lamin A fragment generated by NSP (named fragment b) disappeared in cells incubated with Aβ42 for prolonged periods and this product was preserved by a caspase-6 inhibitor. Furthermore, caspase-6 could remove fragment b in nuclei isolated from Aβ42-treated cells (ANU). Lamin B in ANU was fragmented by caspase-6 only after treatment with an alkaline phosphatase. The caspase-mediated fragmentation of lamin B was also achieved with nuclei isolated from cells incubated with Aβ42 plus a Cdk5 inhibitor. The results indicate that Aβ42 induces NSP-mediated fragmentation of lamin A and the following removal process of fragment b by caspase-6 and an Aβ-induced phosphorylation prevents the fragmentation of lamin B by caspase-6. The pathway leading to lamin protein fragmentation in this investigation appears to be specific for Aβ and thus the data will provide novel insights into the toxicity of the peptide. |
---|