Cargando…

Fabrication of Nanocrystalline Silicon Thin Films Utilized for Optoelectronic Devices Prepared by Thermal Vacuum Evaporation

[Image: see text] Metal-induced crystallization of amorphous silicon is a promising technique for developing high-quality and cheap optoelectronic devices. Many attempts tried to enhance the crystal growth of polycrystalline silicon via aluminum-induced crystallization at different annealing times a...

Descripción completa

Detalles Bibliográficos
Autores principales: Abo Ghazala, Magdy S., Othman, Hosam A., Sharaf El-Deen, Lobna M., Nawwar, Mohamed A., Kashyout, Abd El-hady B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594337/
https://www.ncbi.nlm.nih.gov/pubmed/33134727
http://dx.doi.org/10.1021/acsomega.0c04206
Descripción
Sumario:[Image: see text] Metal-induced crystallization of amorphous silicon is a promising technique for developing high-quality and cheap optoelectronic devices. Many attempts tried to enhance the crystal growth of polycrystalline silicon via aluminum-induced crystallization at different annealing times and temperatures. In this research, thin films of aluminum/silicon (Al/Si) and aluminum/silicon/tin (Al/Si/Sn) layers were fabricated using the thermal evaporation technique with a designed wire tungsten boat. MIC of a:Si was detected at annealing temperature of 500 °C using X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy. The crystallinity of the films is enhanced by increasing the annealing time. In the three-layer thin films, MIC occurs because of the existence of both Al and Sn metals forming highly oriented (111) silicon. Nanocrystalline silicon with dimensions ranged from 5 to 300 nm is produced depending on the structure and time duration. Low surface reflection and the variation of the optical energy gap were detected using UV–vis spectroscopy. Higher conductivities of Al/Si/Sn films than Al/Si films were observed because of the presence of both metals. Highly rectifying ideal diode manufactured from Al/Si/Sn on the FTO layer annealed for 24 h indicates that this device has a great opportunity for the optoelectronic device applications.