Cargando…
Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain
Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. The...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595134/ https://www.ncbi.nlm.nih.gov/pubmed/31959936 http://dx.doi.org/10.1038/s41593-019-0566-1 |
Sumario: | Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call lipid droplet-accumulating microglia (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species, and secrete pro-inflammatory cytokines. RNA sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin, are causes of autosomal dominant forms of human neurodegenerative diseases. We thus propose that LDAM contribute to age-related and genetic forms of neurodegeneration. |
---|