Cargando…

Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation

SIMPLE SUMMARY: Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Guzman, Frederick, Fazeli, Yasamin, Khuu, Meagan, Salcido, Kelsey, Singh, Sarah, Benavente, Claudia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600434/
https://www.ncbi.nlm.nih.gov/pubmed/33003565
http://dx.doi.org/10.3390/cancers12102807
Descripción
Sumario:SIMPLE SUMMARY: Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. ABSTRACT: Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.