Cargando…

Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation

Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyunsung, Ban, Insu, Choi, Yohan, Yu, Seungmin, Youn, So Jung, Baik, Moo-Yeol, Lee, Hyungjae, Kim, Wooki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600901/
https://www.ncbi.nlm.nih.gov/pubmed/33003300
http://dx.doi.org/10.3390/antiox9100931
_version_ 1783603265806532608
author Kim, Hyunsung
Ban, Insu
Choi, Yohan
Yu, Seungmin
Youn, So Jung
Baik, Moo-Yeol
Lee, Hyungjae
Kim, Wooki
author_facet Kim, Hyunsung
Ban, Insu
Choi, Yohan
Yu, Seungmin
Youn, So Jung
Baik, Moo-Yeol
Lee, Hyungjae
Kim, Wooki
author_sort Kim, Hyunsung
collection PubMed
description Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric was investigated for effect on macrophage energy metabolism. The high-performance liquid chromatography analysis revealed that puffing of turmeric significantly induced the degradation of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol. The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages. Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR, resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages. Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous processing method for turmeric as an anti-inflammatory food ingredient.
format Online
Article
Text
id pubmed-7600901
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76009012020-11-01 Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation Kim, Hyunsung Ban, Insu Choi, Yohan Yu, Seungmin Youn, So Jung Baik, Moo-Yeol Lee, Hyungjae Kim, Wooki Antioxidants (Basel) Article Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric was investigated for effect on macrophage energy metabolism. The high-performance liquid chromatography analysis revealed that puffing of turmeric significantly induced the degradation of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol. The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages. Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR, resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages. Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous processing method for turmeric as an anti-inflammatory food ingredient. MDPI 2020-09-29 /pmc/articles/PMC7600901/ /pubmed/33003300 http://dx.doi.org/10.3390/antiox9100931 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kim, Hyunsung
Ban, Insu
Choi, Yohan
Yu, Seungmin
Youn, So Jung
Baik, Moo-Yeol
Lee, Hyungjae
Kim, Wooki
Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title_full Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title_fullStr Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title_full_unstemmed Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title_short Puffing of Turmeric (Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation
title_sort puffing of turmeric (curcuma longa l.) enhances its anti-inflammatory effects by upregulating macrophage oxidative phosphorylation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600901/
https://www.ncbi.nlm.nih.gov/pubmed/33003300
http://dx.doi.org/10.3390/antiox9100931
work_keys_str_mv AT kimhyunsung puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT baninsu puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT choiyohan puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT yuseungmin puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT younsojung puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT baikmooyeol puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT leehyungjae puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation
AT kimwooki puffingofturmericcurcumalongalenhancesitsantiinflammatoryeffectsbyupregulatingmacrophageoxidativephosphorylation