Cargando…
A Novel Bilinear Feature and Multi-Layer Fused Convolutional Neural Network for Tactile Shape Recognition
Convolutional neural networks (CNNs) can automatically learn features from pressure information, and some studies have applied CNNs for tactile shape recognition. However, the limited density of the sensor and its flexibility requirement lead the obtained tactile images to have a low-resolution and...
Autores principales: | Chu, Jie, Cai, Jueping, Song, He, Zhang, Yuxin, Wei, Linyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602476/ https://www.ncbi.nlm.nih.gov/pubmed/33076258 http://dx.doi.org/10.3390/s20205822 |
Ejemplares similares
-
Finger vein recognition based on bilinear fusion of multiscale features
por: Ma, Bin, et al.
Publicado: (2023) -
Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs)
por: Liu, Weihuang, et al.
Publicado: (2020) -
Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion
por: Wan, Zhuang, et al.
Publicado: (2023) -
Diabetic Retinal Grading Using Attention-Based Bilinear Convolutional Neural Network and Complement Cross Entropy
por: Liu, Pingping, et al.
Publicado: (2021) -
Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation
por: Pastor, Francisco, et al.
Publicado: (2019)