Cargando…
Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly
Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610145/ https://www.ncbi.nlm.nih.gov/pubmed/32898582 http://dx.doi.org/10.1016/j.jmb.2020.08.023 |
_version_ | 1783605143489478656 |
---|---|
author | Lockhart-Cairns, Michael P. Newandee, Helena Thomson, Jennifer Weiss, Anthony S. Baldock, Clair Tarakanova, Anna |
author_facet | Lockhart-Cairns, Michael P. Newandee, Helena Thomson, Jennifer Weiss, Anthony S. Baldock, Clair Tarakanova, Anna |
author_sort | Lockhart-Cairns, Michael P. |
collection | PubMed |
description | Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a fibrillin microfibril scaffold for the deposition of elastin. It has been demonstrated previously that the interaction between fibrillin and tropoelastin, the elastin precursor, increases the rate of assembly of tropoelastin. Furthermore, tropoelastin and fibrillin can be cross-linked by transglutaminase-2, but the function of cross-linking on their elastic properties is yet to be elucidated. Here we show that transglutaminase cross-linking supports formation of a 1:1 stoichiometric fibrillin–tropoelastin complex. SAXS data show that the complex retains features of the individual proteins but is elongated supporting end-to-end assembly. Elastic network models were constructed to compare the dynamics of tropoelastin and fibrillin individually as well as in the cross-linked complex. Normal mode analysis was performed to determine the structures' most energetically favourable, biologically accessible motions which show that within the complex, tropoelastin is less mobile and this molecular stabilisation extends along the length of the tropoelastin molecule to regions remote from the cross-linking site. Together, these data suggest a long-range stabilising effect of cross-linking that occurs due to the covalent linkage of fibrillin to tropoelastin. This work provides insight into the interactions of tropoelastin and fibrillin and how cross-link formation stabilises the elastin precursor so it is primed for elastic fibre assembly. |
format | Online Article Text |
id | pubmed-7610145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76101452020-11-13 Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly Lockhart-Cairns, Michael P. Newandee, Helena Thomson, Jennifer Weiss, Anthony S. Baldock, Clair Tarakanova, Anna J Mol Biol Article Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a fibrillin microfibril scaffold for the deposition of elastin. It has been demonstrated previously that the interaction between fibrillin and tropoelastin, the elastin precursor, increases the rate of assembly of tropoelastin. Furthermore, tropoelastin and fibrillin can be cross-linked by transglutaminase-2, but the function of cross-linking on their elastic properties is yet to be elucidated. Here we show that transglutaminase cross-linking supports formation of a 1:1 stoichiometric fibrillin–tropoelastin complex. SAXS data show that the complex retains features of the individual proteins but is elongated supporting end-to-end assembly. Elastic network models were constructed to compare the dynamics of tropoelastin and fibrillin individually as well as in the cross-linked complex. Normal mode analysis was performed to determine the structures' most energetically favourable, biologically accessible motions which show that within the complex, tropoelastin is less mobile and this molecular stabilisation extends along the length of the tropoelastin molecule to regions remote from the cross-linking site. Together, these data suggest a long-range stabilising effect of cross-linking that occurs due to the covalent linkage of fibrillin to tropoelastin. This work provides insight into the interactions of tropoelastin and fibrillin and how cross-link formation stabilises the elastin precursor so it is primed for elastic fibre assembly. Elsevier 2020-10-02 /pmc/articles/PMC7610145/ /pubmed/32898582 http://dx.doi.org/10.1016/j.jmb.2020.08.023 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lockhart-Cairns, Michael P. Newandee, Helena Thomson, Jennifer Weiss, Anthony S. Baldock, Clair Tarakanova, Anna Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title | Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title_full | Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title_fullStr | Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title_full_unstemmed | Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title_short | Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly |
title_sort | transglutaminase-mediated cross-linking of tropoelastin to fibrillin stabilises the elastin precursor prior to elastic fibre assembly |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610145/ https://www.ncbi.nlm.nih.gov/pubmed/32898582 http://dx.doi.org/10.1016/j.jmb.2020.08.023 |
work_keys_str_mv | AT lockhartcairnsmichaelp transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly AT newandeehelena transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly AT thomsonjennifer transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly AT weissanthonys transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly AT baldockclair transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly AT tarakanovaanna transglutaminasemediatedcrosslinkingoftropoelastintofibrillinstabilisestheelastinprecursorpriortoelasticfibreassembly |