Cargando…

Targeted Perturb-seq enables genome-scale genetic screens in single cells

The transcriptome contains rich information on molecular, cellular, and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Schraivogel, Daniel, Gschwind, Andreas R., Milbank, Jennifer H., Leonce, Daniel R., Jakob, Petra, Mathur, Lukas, Korbel, Jan O., Merten, Christoph, Velten, Lars, Steinmetz, Lars M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610614/
https://www.ncbi.nlm.nih.gov/pubmed/32483332
http://dx.doi.org/10.1038/s41592-020-0837-5
_version_ 1783605210664402944
author Schraivogel, Daniel
Gschwind, Andreas R.
Milbank, Jennifer H.
Leonce, Daniel R.
Jakob, Petra
Mathur, Lukas
Korbel, Jan O.
Merten, Christoph
Velten, Lars
Steinmetz, Lars M.
author_facet Schraivogel, Daniel
Gschwind, Andreas R.
Milbank, Jennifer H.
Leonce, Daniel R.
Jakob, Petra
Mathur, Lukas
Korbel, Jan O.
Merten, Christoph
Velten, Lars
Steinmetz, Lars M.
author_sort Schraivogel, Daniel
collection PubMed
description The transcriptome contains rich information on molecular, cellular, and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive, and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of 1,000s of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the human genome. Thereby, we show that enhancer-target association is jointly determined by 3D contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell.
format Online
Article
Text
id pubmed-7610614
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-76106142021-04-14 Targeted Perturb-seq enables genome-scale genetic screens in single cells Schraivogel, Daniel Gschwind, Andreas R. Milbank, Jennifer H. Leonce, Daniel R. Jakob, Petra Mathur, Lukas Korbel, Jan O. Merten, Christoph Velten, Lars Steinmetz, Lars M. Nat Methods Article The transcriptome contains rich information on molecular, cellular, and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive, and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of 1,000s of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the human genome. Thereby, we show that enhancer-target association is jointly determined by 3D contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell. 2020-06-01 2020-06-01 /pmc/articles/PMC7610614/ /pubmed/32483332 http://dx.doi.org/10.1038/s41592-020-0837-5 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Schraivogel, Daniel
Gschwind, Andreas R.
Milbank, Jennifer H.
Leonce, Daniel R.
Jakob, Petra
Mathur, Lukas
Korbel, Jan O.
Merten, Christoph
Velten, Lars
Steinmetz, Lars M.
Targeted Perturb-seq enables genome-scale genetic screens in single cells
title Targeted Perturb-seq enables genome-scale genetic screens in single cells
title_full Targeted Perturb-seq enables genome-scale genetic screens in single cells
title_fullStr Targeted Perturb-seq enables genome-scale genetic screens in single cells
title_full_unstemmed Targeted Perturb-seq enables genome-scale genetic screens in single cells
title_short Targeted Perturb-seq enables genome-scale genetic screens in single cells
title_sort targeted perturb-seq enables genome-scale genetic screens in single cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610614/
https://www.ncbi.nlm.nih.gov/pubmed/32483332
http://dx.doi.org/10.1038/s41592-020-0837-5
work_keys_str_mv AT schraivogeldaniel targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT gschwindandreasr targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT milbankjenniferh targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT leoncedanielr targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT jakobpetra targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT mathurlukas targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT korbeljano targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT mertenchristoph targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT veltenlars targetedperturbseqenablesgenomescalegeneticscreensinsinglecells
AT steinmetzlarsm targetedperturbseqenablesgenomescalegeneticscreensinsinglecells