Cargando…
Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells
Cryo-electron microscopy (cryo-EM) enables macromolecular structure determination in vitro and inside cells. In addition to aligning individual particles, accurate registration of sample motion and 3D deformation during exposures are crucial for achieving high resolution reconstructions. Here we des...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611018/ https://www.ncbi.nlm.nih.gov/pubmed/33542511 http://dx.doi.org/10.1038/s41592-020-01054-7 |
_version_ | 1783605250407530496 |
---|---|
author | Tegunov, Dimitry Xue, Liang Dienemann, Christian Cramer, Patrick Mahamid, Julia |
author_facet | Tegunov, Dimitry Xue, Liang Dienemann, Christian Cramer, Patrick Mahamid, Julia |
author_sort | Tegunov, Dimitry |
collection | PubMed |
description | Cryo-electron microscopy (cryo-EM) enables macromolecular structure determination in vitro and inside cells. In addition to aligning individual particles, accurate registration of sample motion and 3D deformation during exposures are crucial for achieving high resolution reconstructions. Here we describe M, a software tool that establishes a reference-based, multi-particle refinement framework for cryo-EM data and couples a comprehensive spatial deformation model to in silico correction of electron-optical aberrations. M provides a unified optimization framework for both frame-series and tomographic tilt-series data. We show that tilt-series data can provide the same resolution as frame-series on a purified protein specimen, indicating that the alignment step no longer limits the resolution obtainable from tomographic data. In combination with Warp and RELION, M resolves to residue-level a 70S ribosome bound to an antibiotic inside intact bacterial cells. Our work provides a computational tool that facilitates structural biology in cells. |
format | Online Article Text |
id | pubmed-7611018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76110182021-08-04 Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells Tegunov, Dimitry Xue, Liang Dienemann, Christian Cramer, Patrick Mahamid, Julia Nat Methods Article Cryo-electron microscopy (cryo-EM) enables macromolecular structure determination in vitro and inside cells. In addition to aligning individual particles, accurate registration of sample motion and 3D deformation during exposures are crucial for achieving high resolution reconstructions. Here we describe M, a software tool that establishes a reference-based, multi-particle refinement framework for cryo-EM data and couples a comprehensive spatial deformation model to in silico correction of electron-optical aberrations. M provides a unified optimization framework for both frame-series and tomographic tilt-series data. We show that tilt-series data can provide the same resolution as frame-series on a purified protein specimen, indicating that the alignment step no longer limits the resolution obtainable from tomographic data. In combination with Warp and RELION, M resolves to residue-level a 70S ribosome bound to an antibiotic inside intact bacterial cells. Our work provides a computational tool that facilitates structural biology in cells. 2021-02-01 2021-02-04 /pmc/articles/PMC7611018/ /pubmed/33542511 http://dx.doi.org/10.1038/s41592-020-01054-7 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Tegunov, Dimitry Xue, Liang Dienemann, Christian Cramer, Patrick Mahamid, Julia Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title | Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title_full | Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title_fullStr | Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title_full_unstemmed | Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title_short | Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells |
title_sort | multi-particle cryo-em refinement with m visualizes ribosome-antibiotic complex at 3.5 å in cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611018/ https://www.ncbi.nlm.nih.gov/pubmed/33542511 http://dx.doi.org/10.1038/s41592-020-01054-7 |
work_keys_str_mv | AT tegunovdimitry multiparticlecryoemrefinementwithmvisualizesribosomeantibioticcomplexat35aincells AT xueliang multiparticlecryoemrefinementwithmvisualizesribosomeantibioticcomplexat35aincells AT dienemannchristian multiparticlecryoemrefinementwithmvisualizesribosomeantibioticcomplexat35aincells AT cramerpatrick multiparticlecryoemrefinementwithmvisualizesribosomeantibioticcomplexat35aincells AT mahamidjulia multiparticlecryoemrefinementwithmvisualizesribosomeantibioticcomplexat35aincells |