Cargando…
Self-repair protects microtubules from their destruction by molecular motors
Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced...
Autores principales: | Triclin, Sarah, Inoue, Daisuke, Gaillard, Jérémie, Htet, Zaw Min, DeSantis, Morgan E., Portran, Didier, Derivery, Emmanuel, Aumeier, Charlotte, Schaedel, Laura, John, Karin, Leterrier, Christophe, Reck-Peterson, Samara L., Blanchoin, Laurent, Théry, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611741/ https://www.ncbi.nlm.nih.gov/pubmed/33479528 http://dx.doi.org/10.1038/s41563-020-00905-0 |
Ejemplares similares
-
Lattice defects induce microtubule self-renewal
por: Schaedel, Laura, et al.
Publicado: (2019) -
Self-repair promotes microtubule rescue
por: Aumeier, Charlotte, et al.
Publicado: (2016) -
Microtubules self-repair in response to mechanical stress
por: Schaedel, Laura, et al.
Publicado: (2015) -
Tubulin acetylation protects long-lived microtubules against mechanical aging
por: Portran, Didier, et al.
Publicado: (2017) -
CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation
por: Aher, Amol, et al.
Publicado: (2020)