Cargando…
Accurate error control in high-dimensional association testing using conditional false discovery rates
High-dimensional hypothesis testing is ubiquitous in the biomedical sciences, and informative covariates may be employed to improve power. The conditional false discovery rate (cFDR) is a widely used approach suited to the setting where the covariate is a set of p-values for the equivalent hypothese...
Autores principales: | Liley, James, Wallace, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612315/ https://www.ncbi.nlm.nih.gov/pubmed/33682201 http://dx.doi.org/10.1002/bimj.201900254 |
Ejemplares similares
-
A Pleiotropy-Informed Bayesian False Discovery Rate Adapted to a Shared Control Design Finds New Disease Associations From GWAS Summary Statistics
por: Liley, James, et al.
Publicado: (2015) -
Testing Jumps via False Discovery Rate Control
por: Yen, Yu-Min
Publicado: (2013) -
Correspondence (reply): The application conditions of false discovery rate control
por: Zhang, Hongbin, et al.
Publicado: (2022) -
Controlling type I error rates in multi-arm clinical trials: A case for the false discovery rate
por: Wason, James M. S., et al.
Publicado: (2021) -
Controlling the Rate of GWAS False Discoveries
por: Brzyski, Damian, et al.
Publicado: (2017)