Cargando…

The benefits of covariate adjustment for adaptive multi-arm designs

Covariate adjustment via a regression approach is known to increase the precision of statistical inference when fixed trial designs are employed in randomized controlled studies. When an adaptive multi-arm design is employed with the ability to select treatments, it is unclear how covariate adjustme...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kim May, Robertson, David S., Jaki, Thomas, Emsley, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613816/
https://www.ncbi.nlm.nih.gov/pubmed/35876412
http://dx.doi.org/10.1177/09622802221114544
_version_ 1783605525524512768
author Lee, Kim May
Robertson, David S.
Jaki, Thomas
Emsley, Richard
author_facet Lee, Kim May
Robertson, David S.
Jaki, Thomas
Emsley, Richard
author_sort Lee, Kim May
collection PubMed
description Covariate adjustment via a regression approach is known to increase the precision of statistical inference when fixed trial designs are employed in randomized controlled studies. When an adaptive multi-arm design is employed with the ability to select treatments, it is unclear how covariate adjustment affects various aspects of the study. Consider the design framework that relies on pre-specified treatment selection rule(s) and a combination test approach for hypothesis testing. It is our primary goal to evaluate the impact of covariate adjustment on adaptive multi-arm designs with treatment selection. Our secondary goal is to show how the Uniformly Minimum Variance Conditionally Unbiased Estimator can be extended to account for covariate adjustment analytically. We find that adjustment with different sets of covariates can lead to different treatment selection outcomes and hence probabilities of rejecting hypotheses. Nevertheless, we do not see any negative impact on the control of the familywise error rate when covariates are included in the analysis model. When adjusting for covariates that are moderately or highly correlated with the outcome, we see various benefits to the analysis of the design. Conversely, there is negligible impact when including covariates that are uncorrelated with the outcome. Overall, pre-specification of covariate adjustment is recommended for the analysis of adaptive multi-arm design with treatment selection. Having the statistical analysis plan in place prior to the interim and final analyses is crucial, especially when a non-collapsible measure of treatment effect is considered in the trial.
format Online
Article
Text
id pubmed-7613816
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-76138162022-11-14 The benefits of covariate adjustment for adaptive multi-arm designs Lee, Kim May Robertson, David S. Jaki, Thomas Emsley, Richard Stat Methods Med Res Original Research Articles Covariate adjustment via a regression approach is known to increase the precision of statistical inference when fixed trial designs are employed in randomized controlled studies. When an adaptive multi-arm design is employed with the ability to select treatments, it is unclear how covariate adjustment affects various aspects of the study. Consider the design framework that relies on pre-specified treatment selection rule(s) and a combination test approach for hypothesis testing. It is our primary goal to evaluate the impact of covariate adjustment on adaptive multi-arm designs with treatment selection. Our secondary goal is to show how the Uniformly Minimum Variance Conditionally Unbiased Estimator can be extended to account for covariate adjustment analytically. We find that adjustment with different sets of covariates can lead to different treatment selection outcomes and hence probabilities of rejecting hypotheses. Nevertheless, we do not see any negative impact on the control of the familywise error rate when covariates are included in the analysis model. When adjusting for covariates that are moderately or highly correlated with the outcome, we see various benefits to the analysis of the design. Conversely, there is negligible impact when including covariates that are uncorrelated with the outcome. Overall, pre-specification of covariate adjustment is recommended for the analysis of adaptive multi-arm design with treatment selection. Having the statistical analysis plan in place prior to the interim and final analyses is crucial, especially when a non-collapsible measure of treatment effect is considered in the trial. SAGE Publications 2022-07-25 2022-11 /pmc/articles/PMC7613816/ /pubmed/35876412 http://dx.doi.org/10.1177/09622802221114544 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Articles
Lee, Kim May
Robertson, David S.
Jaki, Thomas
Emsley, Richard
The benefits of covariate adjustment for adaptive multi-arm designs
title The benefits of covariate adjustment for adaptive multi-arm designs
title_full The benefits of covariate adjustment for adaptive multi-arm designs
title_fullStr The benefits of covariate adjustment for adaptive multi-arm designs
title_full_unstemmed The benefits of covariate adjustment for adaptive multi-arm designs
title_short The benefits of covariate adjustment for adaptive multi-arm designs
title_sort benefits of covariate adjustment for adaptive multi-arm designs
topic Original Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613816/
https://www.ncbi.nlm.nih.gov/pubmed/35876412
http://dx.doi.org/10.1177/09622802221114544
work_keys_str_mv AT leekimmay thebenefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT robertsondavids thebenefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT jakithomas thebenefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT emsleyrichard thebenefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT leekimmay benefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT robertsondavids benefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT jakithomas benefitsofcovariateadjustmentforadaptivemultiarmdesigns
AT emsleyrichard benefitsofcovariateadjustmentforadaptivemultiarmdesigns