Cargando…
Hypoxia-inducible factor-2α is crucial for proper brain development
Sufficient tissue oxygenation is required for regular brain function; thus oxygen supply must be tightly regulated to avoid hypoxia and irreversible cell damage. If hypoxia occurs the transcription factor complex hypoxia-inducible factor (HIF) will accumulate and coordinate adaptation of cells to hy...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644612/ https://www.ncbi.nlm.nih.gov/pubmed/33154420 http://dx.doi.org/10.1038/s41598-020-75838-4 |
Sumario: | Sufficient tissue oxygenation is required for regular brain function; thus oxygen supply must be tightly regulated to avoid hypoxia and irreversible cell damage. If hypoxia occurs the transcription factor complex hypoxia-inducible factor (HIF) will accumulate and coordinate adaptation of cells to hypoxia. However, even under atmospheric O(2) conditions stabilized HIF-2α protein was found in brains of adult mice. Mice with a neuro-specific knockout of Hif-2α showed a reduction of pyramidal neurons in the retrosplenial cortex (RSC), a brain region responsible for a range of cognitive functions, including memory and navigation. Accordingly, behavioral studies showed disturbed cognitive abilities in these mice. In search of the underlying mechanisms for the specific loss of pyramidal cells in the RSC, we found deficits in migration in neural stem cells from Hif-2α knockout mice due to altered expression patterns of genes highly associated with neuronal migration and positioning. |
---|