Cargando…
Deep learning approach for predicting functional Z-DNA regions using omics data
Computational methods to predict Z-DNA regions are in high demand to understand the functional role of Z-DNA. The previous state-of-the-art method Z-Hunt is based on statistical mechanical and energy considerations about B- to Z-DNA transition using sequence information. Z-DNA CHiP-seq experiment re...
Autores principales: | Beknazarov, Nazar, Jin, Seungmin, Poptsova, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644757/ https://www.ncbi.nlm.nih.gov/pubmed/33154517 http://dx.doi.org/10.1038/s41598-020-76203-1 |
Ejemplares similares
-
Z-flipon variants reveal the many roles of Z-DNA and Z-RNA in health and disease
por: Umerenkov, Dmitry, et al.
Publicado: (2023) -
Special Issue: A, B and Z: The Structure, Function and Genetics of Z-DNA and Z-RNA
por: Herbert, Alan, et al.
Publicado: (2021) -
Omics Data and Data Representations for Deep Learning-Based Predictive Modeling
por: Tsimenidis, Stefanos, et al.
Publicado: (2022) -
Machine learning and deep learning methods that use omics data for metastasis prediction
por: Albaradei, Somayah, et al.
Publicado: (2021) -
Deep learning and multi-omics approach to predict drug responses in cancer
por: Wang, Conghao, et al.
Publicado: (2022)