Cargando…

High leucine levels affecting valine and isoleucine recommendations in low-protein diets for broiler chickens

Four experiments were conducted to estimate the optimal standardized ileal digestible (SID) level of branched-chain amino acids in low-protein diets during the starter, grower, and finisher periods, using the response surface methodology, and to study their effects on performance and mRNA expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Ospina-Rojas, I.C., Pozza, P.C., Rodrigueiro, R.J.B., Gasparino, E., Khatlab, A.S., Murakami, A.E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647919/
https://www.ncbi.nlm.nih.gov/pubmed/33142512
http://dx.doi.org/10.1016/j.psj.2020.08.053
Descripción
Sumario:Four experiments were conducted to estimate the optimal standardized ileal digestible (SID) level of branched-chain amino acids in low-protein diets during the starter, grower, and finisher periods, using the response surface methodology, and to study their effects on performance and mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway of broiler chickens from 8 to 21 D of age. In experiments 1, 2, and 3, a total of 1,500 Cobb male broiler chickens were assigned to 15 diets of a central composite rotatable design (CCD) of response surface methodology containing 5 levels of SID Leu, Val, and Ile with 5 replicate pens of 20 birds each. A 3-factor, 5-level CCD platform was used to fit the second-order polynomial equation of broiler performance. In experiment 4, a total of 540 8-day-old Cobb male broiler chickens were distributed in a completely randomized 2 x 3 x 3 factorial arrangement with 2 SID Leu levels (1.28 or 1.83%), 3 SID Val levels (0.65, 0.90, or 1.20%), and 3 SID Ile levels (0.54, 0.79, or 1.09%) for a total of 18 treatments with 5 replicate cages of 6 birds each. High Leu levels impaired (P < 0.05) gain:feed when birds were fed marginal Val or Ile diets. However, gain:feed was restored when both Val and Ile were supplemented to reach adequate or high levels. High Leu levels increased (P < 0.05) mRNA expression of S6K1 and eEF2 genes only in birds fed high Ile levels. Dietary SID Leu, Val, and Ile levels required for gain:feed optimization in low-protein diets were estimated at 1.37, 0.94, and 0.87% during the starter period; 1.23, 0.82, and 0.75% during the grower period; and 1.15, 0.77, and 0.70% during the finisher phase, respectively. Higher Val and Ile levels are required to optimize the effect of Leu supplementation on mRNA expression of mTOR pathway genes in the pectoralis major muscle of broilers from day 1 to 21 after hatch.