Cargando…
Lack of sphingomyelin synthase 2 reduces cerebral ischemia/reperfusion injury by inhibiting microglial inflammation in mice
Recanalization of blood flow after ischemia can lead to ischemia/reperfusion injury, and inflammation plays an important role in the mechanisms behind cerebral ischemia/reperfusion injury. Sphingomyelin synthase 2 (SMS2) deficiency reduces inflammation; however, the effect and mechanism of action of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651782/ https://www.ncbi.nlm.nih.gov/pubmed/33178339 http://dx.doi.org/10.3892/etm.2020.9371 |
Sumario: | Recanalization of blood flow after ischemia can lead to ischemia/reperfusion injury, and inflammation plays an important role in the mechanisms behind cerebral ischemia/reperfusion injury. Sphingomyelin synthase 2 (SMS2) deficiency reduces inflammation; however, the effect and mechanism of action of SMS2 on the inflammatory response after cerebral ischemia/reperfusion injury are still unclear. Wild-type (WT) and SMS2 knockout C57BL/6 mice were used to establish a model of cerebral ischemia/reperfusion. The neurological deficit score was evaluated with Longa's method, and infarct volume was evaluated by magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. Neurological deficit and infarct volume were used to evaluate the degree of cerebral ischemia/reperfusion injury in mice. Western blotting, reverse transcription-quantitative PCR and immunofluorescence were used to detect the expression profiles. The neurological deficit score of SMS2(-/-) mice was significantly lower than that of WT mice at 72 h after cerebral ischemia/reperfusion injury (P=0.027), but not significantly different at 24 h (P=0.064). Compared with WT mice at 24 and 72 h after cerebral ischemia/reperfusion, the infarct volume of SMS2(-/-) mice was decreased, the expression of pro-inflammatory cytokines galectin 3 and interleukin-1β were decreased, the activation of microglia was decreased, and the nuclear translocation of NF-κB p65 was decreased, but the expression of the anti-inflammatory factor arginase 1 was increased. Lack of SMS2 in mice can help to reduce the inflammatory reaction by inhibiting the activation of NF-κB signaling pathway, further attenuating cerebral ischemia/reperfusion injury in mice. |
---|