Cargando…
Minimalist analogue robot discovers animal-like walking gaits
Robots based on simplified or abstracted biomechanical concepts can be a useful tool for investigating how and why animals move the way they do. In this paper we present an extremely simple quadruped robot, which is able to walk with no form of software or controller. Instead, individual leg movemen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655146/ https://www.ncbi.nlm.nih.gov/pubmed/31869827 http://dx.doi.org/10.1088/1748-3190/ab654e |
_version_ | 1783608180330201088 |
---|---|
author | Smith, Benjamin J H Usherwood, James R |
author_facet | Smith, Benjamin J H Usherwood, James R |
author_sort | Smith, Benjamin J H |
collection | PubMed |
description | Robots based on simplified or abstracted biomechanical concepts can be a useful tool for investigating how and why animals move the way they do. In this paper we present an extremely simple quadruped robot, which is able to walk with no form of software or controller. Instead, individual leg movements are triggered directly by switches on each leg which detect leg loading and unloading. As the robot progresses, pitching and rolling movements of its body result in a gait emerging with a consistent leg movement order, despite variations in stride and stance time. This gait has similarities to the gaits used by walking primates and grazing livestock, and is close to the gait which was recently theorised to derive from animal body geometry. As well as presenting the design and construction of the robot, we present experimental measurements of the robot’s gait kinematics and ground reaction forces determined using high speed video and a pressure mat, and compare these to gait parameters of animals taken from literature. Our results support the theory that body geometry is a key determinant of animal gait at low speeds, and also demonstrate that steady state locomotion can be achieved with little to no active control. |
format | Online Article Text |
id | pubmed-7655146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | IOP Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-76551462020-11-12 Minimalist analogue robot discovers animal-like walking gaits Smith, Benjamin J H Usherwood, James R Bioinspir Biomim Paper Robots based on simplified or abstracted biomechanical concepts can be a useful tool for investigating how and why animals move the way they do. In this paper we present an extremely simple quadruped robot, which is able to walk with no form of software or controller. Instead, individual leg movements are triggered directly by switches on each leg which detect leg loading and unloading. As the robot progresses, pitching and rolling movements of its body result in a gait emerging with a consistent leg movement order, despite variations in stride and stance time. This gait has similarities to the gaits used by walking primates and grazing livestock, and is close to the gait which was recently theorised to derive from animal body geometry. As well as presenting the design and construction of the robot, we present experimental measurements of the robot’s gait kinematics and ground reaction forces determined using high speed video and a pressure mat, and compare these to gait parameters of animals taken from literature. Our results support the theory that body geometry is a key determinant of animal gait at low speeds, and also demonstrate that steady state locomotion can be achieved with little to no active control. IOP Publishing 2020-03 2020-02-07 /pmc/articles/PMC7655146/ /pubmed/31869827 http://dx.doi.org/10.1088/1748-3190/ab654e Text en © 2020 IOP Publishing Ltd http://creativecommons.org/licenses/by/3.0/ Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (http://creativecommons.org/licenses/by/3.0) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
spellingShingle | Paper Smith, Benjamin J H Usherwood, James R Minimalist analogue robot discovers animal-like walking gaits |
title | Minimalist analogue robot discovers animal-like walking
gaits |
title_full | Minimalist analogue robot discovers animal-like walking
gaits |
title_fullStr | Minimalist analogue robot discovers animal-like walking
gaits |
title_full_unstemmed | Minimalist analogue robot discovers animal-like walking
gaits |
title_short | Minimalist analogue robot discovers animal-like walking
gaits |
title_sort | minimalist analogue robot discovers animal-like walking
gaits |
topic | Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655146/ https://www.ncbi.nlm.nih.gov/pubmed/31869827 http://dx.doi.org/10.1088/1748-3190/ab654e |
work_keys_str_mv | AT smithbenjaminjh minimalistanaloguerobotdiscoversanimallikewalkinggaits AT usherwoodjamesr minimalistanaloguerobotdiscoversanimallikewalkinggaits |