Cargando…
Variance constraints strongly influenced model performance in growth mixture modeling: a simulation and empirical study
BACKGROUND: Growth Mixture Modeling (GMM) is commonly used to group individuals on their development over time, but convergence issues and impossible values are common. This can result in unreliable model estimates. Constraining variance parameters across classes or over time can solve these issues,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659099/ https://www.ncbi.nlm.nih.gov/pubmed/33183230 http://dx.doi.org/10.1186/s12874-020-01154-0 |