Cargando…
Variance constraints strongly influenced model performance in growth mixture modeling: a simulation and empirical study
BACKGROUND: Growth Mixture Modeling (GMM) is commonly used to group individuals on their development over time, but convergence issues and impossible values are common. This can result in unreliable model estimates. Constraining variance parameters across classes or over time can solve these issues,...
Autores principales: | Sijbrandij, Jitske J., Hoekstra, Tialda, Almansa, Josué, Peeters, Margot, Bültmann, Ute, Reijneveld, Sijmen A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659099/ https://www.ncbi.nlm.nih.gov/pubmed/33183230 http://dx.doi.org/10.1186/s12874-020-01154-0 |
Ejemplares similares
-
A capital-based approach to better understand health inequalities: Theoretical and empirical explorations
por: Qi, Yuwei, et al.
Publicado: (2022) -
Multimorbidity and the Transition Out of Full-Time Paid Employment: A Longitudinal Analysis of the Health and Retirement Study
por: van Zon, Sander K R, et al.
Publicado: (2020) -
The Impact of Imposing Equality Constraints on Residual Variances Across Classes in Regression Mixture Models
por: Choi, Jeongwon, et al.
Publicado: (2022) -
The prospective association between obesity and major depression in the general population: does single or recurrent episode matter?
por: Nigatu, Yeshambel T, et al.
Publicado: (2015) -
Less reduction of psychosocial problems among adolescents with unmet communication needs
por: Jager, Margot, et al.
Publicado: (2016)