Cargando…

Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference

We present a novel approach for training deep neural networks in a Bayesian way. Compared to other Bayesian deep learning formulations, our approach allows for quantifying the uncertainty in model parameters while only adding very few additional parameters to be optimized. The proposed approach uses...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinbrener, Jan, Posch, Konstantin, Pilz, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660222/
https://www.ncbi.nlm.nih.gov/pubmed/33113927
http://dx.doi.org/10.3390/s20216011