Cargando…
Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference
We present a novel approach for training deep neural networks in a Bayesian way. Compared to other Bayesian deep learning formulations, our approach allows for quantifying the uncertainty in model parameters while only adding very few additional parameters to be optimized. The proposed approach uses...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660222/ https://www.ncbi.nlm.nih.gov/pubmed/33113927 http://dx.doi.org/10.3390/s20216011 |
Sumario: | We present a novel approach for training deep neural networks in a Bayesian way. Compared to other Bayesian deep learning formulations, our approach allows for quantifying the uncertainty in model parameters while only adding very few additional parameters to be optimized. The proposed approach uses variational inference to approximate the intractable a posteriori distribution on basis of a normal prior. By representing the a posteriori uncertainty of the network parameters per network layer and depending on the estimated parameter expectation values, only very few additional parameters need to be optimized compared to a non-Bayesian network. We compare our approach to classical deep learning, Bernoulli dropout and Bayes by Backprop using the MNIST dataset. Compared to classical deep learning, the test error is reduced by 15%. We also show that the uncertainty information obtained can be used to calculate credible intervals for the network prediction and to optimize network architecture for the dataset at hand. To illustrate that our approach also scales to large networks and input vector sizes, we apply it to the GoogLeNet architecture on a custom dataset, achieving an average accuracy of 0.92. Using 95% credible intervals, all but one wrong classification result can be detected. |
---|