Cargando…
Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference
We present a novel approach for training deep neural networks in a Bayesian way. Compared to other Bayesian deep learning formulations, our approach allows for quantifying the uncertainty in model parameters while only adding very few additional parameters to be optimized. The proposed approach uses...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660222/ https://www.ncbi.nlm.nih.gov/pubmed/33113927 http://dx.doi.org/10.3390/s20216011 |