Cargando…
Effects of Detergent on α-Synuclein Structure: A Native MS-Ion Mobility Study
The intrinsically disordered protein α-synuclein plays a major role in Parkinson’s disease. The protein can oligomerize resulting in the formation of various aggregated species in neuronal cells, leading to neurodegeneration. The interaction of α-synuclein with biological cell membranes plays an imp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660655/ https://www.ncbi.nlm.nih.gov/pubmed/33114222 http://dx.doi.org/10.3390/ijms21217884 |
Sumario: | The intrinsically disordered protein α-synuclein plays a major role in Parkinson’s disease. The protein can oligomerize resulting in the formation of various aggregated species in neuronal cells, leading to neurodegeneration. The interaction of α-synuclein with biological cell membranes plays an important role for specific functions of α-synuclein monomers, e.g., in neurotransmitter release. Using different types of detergents to mimic lipid molecules present in biological membranes, including the presence of Ca(2+) ions as an important structural factor, we aimed to gain an understanding of how α-synuclein interacts with membrane models and how this affects the protein conformation and potential oligomerization. We investigated detergent binding stoichiometry, affinity and conformational changes of α-synuclein taking detergent concentration, different detergent structures and charges into account. With native nano-electrospray ionization ion mobility-mass spectrometry, we were able to detect unique conformational patterns resulting from binding of specific detergents to α-synuclein. Our data demonstrate that α-synuclein monomers can interact with detergent molecules irrespective of their charge, that protein-micelle interactions occur and that micelle properties are an important factor. |
---|