Cargando…
Learning and interpreting the gene regulatory grammar in a deep learning framework
Deep neural networks (DNNs) have achieved state-of-the-art performance in identifying gene regulatory sequences, but they have provided limited insight into the biology of regulatory elements due to the difficulty of interpreting the complex features they learn. Several models of how combinatorial b...
Autores principales: | Chen, Ling, Capra, John A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660921/ https://www.ncbi.nlm.nih.gov/pubmed/33137083 http://dx.doi.org/10.1371/journal.pcbi.1008334 |
Ejemplares similares
-
Active learning of enhancer and silencer regulatory grammar in photoreceptors
por: Friedman, Ryan Z., et al.
Publicado: (2023) -
Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences
por: Cuperus, Josh T., et al.
Publicado: (2017) -
Teaching and learning grammar /
por: Harmer, Jeremy
Publicado: (1987) -
An interpretable deep learning framework for genome-informed precision oncology
por: Ren, Shuangxia, et al.
Publicado: (2023) -
Predicting adverse drug reactions through interpretable deep learning framework
por: Dey, Sanjoy, et al.
Publicado: (2018)