Cargando…
Analysis of Various Pickup Coil Designs in Nonmodule-Type GaN Power Semiconductors
Gallium nitride (GaN) devices are advantageous over conventional Silicon (Si) devices in terms of their small size, low on-resistance, and high dv/dt characteristics; these ensure a high integrated density circuit configuration, high efficiency, and fast switching speed. Therefore, in the diagnosis...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662748/ https://www.ncbi.nlm.nih.gov/pubmed/33113833 http://dx.doi.org/10.3390/s20216066 |
Sumario: | Gallium nitride (GaN) devices are advantageous over conventional Silicon (Si) devices in terms of their small size, low on-resistance, and high dv/dt characteristics; these ensure a high integrated density circuit configuration, high efficiency, and fast switching speed. Therefore, in the diagnosis and protection of a system containing a GaN power semiconductor, the transient state for accurate switch current measurement must be analyzed. The pick-up coil, as a current sensor for switch current measurement in a system comprising a surface-mount-device-type nonmodular GaN power semiconductor, has the advantages of a higher degree-of-freedom configuration for its printed circuit board, a relatively small size, and lower cost than other current sensors. However, owing to the fast switching characteristics of the GaN device, a bandwidth of hundreds MHz must be secured along with a coil configuration that must overcome the limitations of relatively low sensitivity of the conventional current sensor. This paper analyzes the pick-up coil sensor models that can achieve optimal bandwidth and sensitivity for switch current measurement in GaN based device. So four configurable pick-up coil models are considered and compared according to coil-parameter using mathematical methods, magnetic, and frequency-response analysis. Finally, an optimal coil model is proposed and validated using a double-pulse test. |
---|