Cargando…
Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells
SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663377/ https://www.ncbi.nlm.nih.gov/pubmed/33139635 http://dx.doi.org/10.3390/ijms21218189 |
_version_ | 1783609613706330112 |
---|---|
author | Pirklbauer, Markus Bernd, Maximilian Fuchs, Lisa Staudinger, Petra Corazza, Ulrike Leierer, Johannes Mayer, Gert Schramek, Herbert |
author_facet | Pirklbauer, Markus Bernd, Maximilian Fuchs, Lisa Staudinger, Petra Corazza, Ulrike Leierer, Johannes Mayer, Gert Schramek, Herbert |
author_sort | Pirklbauer, Markus |
collection | PubMed |
description | SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection. |
format | Online Article Text |
id | pubmed-7663377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76633772020-11-14 Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells Pirklbauer, Markus Bernd, Maximilian Fuchs, Lisa Staudinger, Petra Corazza, Ulrike Leierer, Johannes Mayer, Gert Schramek, Herbert Int J Mol Sci Article SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection. MDPI 2020-11-01 /pmc/articles/PMC7663377/ /pubmed/33139635 http://dx.doi.org/10.3390/ijms21218189 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pirklbauer, Markus Bernd, Maximilian Fuchs, Lisa Staudinger, Petra Corazza, Ulrike Leierer, Johannes Mayer, Gert Schramek, Herbert Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title | Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title_full | Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title_fullStr | Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title_full_unstemmed | Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title_short | Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells |
title_sort | empagliflozin inhibits basal and il-1β-mediated mcp-1/ccl2 and endothelin-1 expression in human proximal tubular cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663377/ https://www.ncbi.nlm.nih.gov/pubmed/33139635 http://dx.doi.org/10.3390/ijms21218189 |
work_keys_str_mv | AT pirklbauermarkus empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT berndmaximilian empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT fuchslisa empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT staudingerpetra empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT corazzaulrike empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT leiererjohannes empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT mayergert empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells AT schramekherbert empagliflozininhibitsbasalandil1bmediatedmcp1ccl2andendothelin1expressioninhumanproximaltubularcells |