Cargando…
Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method
Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we use...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663447/ https://www.ncbi.nlm.nih.gov/pubmed/33142905 http://dx.doi.org/10.3390/s20216235 |
_version_ | 1783609629211623424 |
---|---|
author | Xu, Chengyi Liu, Ying Ding, Fenglong Zhuang, Zilong |
author_facet | Xu, Chengyi Liu, Ying Ding, Fenglong Zhuang, Zilong |
author_sort | Xu, Chengyi |
collection | PubMed |
description | Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we used self-developed scanning equipment to collect images of wood boards and a robot to drive a RGB-D camera to collect images of disorderly stacked wooden planks. The image patches cut from these images were input to a convolutional autoencoder to train and obtain a local texture feature descriptor that is robust to changes in perspective. Then, the small image patches around the point pairs of the plank model are extracted, and input into the trained encoder to obtain the feature vector of the image patch, combining the point pair geometric feature information to form a feature description code expressing the characteristics of the plank. After that, the robot drives the RGB-D camera to collect the local image patches of the point pairs in the area to be grasped in the scene of the stacked wooden planks, also obtaining the feature description code of the wooden planks to be grasped. Finally, through the process of point pair feature matching, pose voting and clustering, the pose of the plank to be grasped is determined. The robot grasping experiment here shows that both the recognition rate and grasping success rate of planks are high, reaching 95.3% and 93.8%, respectively. Compared with the traditional point pair feature method (PPF) and other methods, the method present here has obvious advantages and can be applied to stacked wood plank grasping environments. |
format | Online Article Text |
id | pubmed-7663447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76634472020-11-14 Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method Xu, Chengyi Liu, Ying Ding, Fenglong Zhuang, Zilong Sensors (Basel) Article Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we used self-developed scanning equipment to collect images of wood boards and a robot to drive a RGB-D camera to collect images of disorderly stacked wooden planks. The image patches cut from these images were input to a convolutional autoencoder to train and obtain a local texture feature descriptor that is robust to changes in perspective. Then, the small image patches around the point pairs of the plank model are extracted, and input into the trained encoder to obtain the feature vector of the image patch, combining the point pair geometric feature information to form a feature description code expressing the characteristics of the plank. After that, the robot drives the RGB-D camera to collect the local image patches of the point pairs in the area to be grasped in the scene of the stacked wooden planks, also obtaining the feature description code of the wooden planks to be grasped. Finally, through the process of point pair feature matching, pose voting and clustering, the pose of the plank to be grasped is determined. The robot grasping experiment here shows that both the recognition rate and grasping success rate of planks are high, reaching 95.3% and 93.8%, respectively. Compared with the traditional point pair feature method (PPF) and other methods, the method present here has obvious advantages and can be applied to stacked wood plank grasping environments. MDPI 2020-10-31 /pmc/articles/PMC7663447/ /pubmed/33142905 http://dx.doi.org/10.3390/s20216235 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Chengyi Liu, Ying Ding, Fenglong Zhuang, Zilong Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title | Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title_full | Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title_fullStr | Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title_full_unstemmed | Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title_short | Recognition and Grasping of Disorderly Stacked Wood Planks Using a Local Image Patch and Point Pair Feature Method |
title_sort | recognition and grasping of disorderly stacked wood planks using a local image patch and point pair feature method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663447/ https://www.ncbi.nlm.nih.gov/pubmed/33142905 http://dx.doi.org/10.3390/s20216235 |
work_keys_str_mv | AT xuchengyi recognitionandgraspingofdisorderlystackedwoodplanksusingalocalimagepatchandpointpairfeaturemethod AT liuying recognitionandgraspingofdisorderlystackedwoodplanksusingalocalimagepatchandpointpairfeaturemethod AT dingfenglong recognitionandgraspingofdisorderlystackedwoodplanksusingalocalimagepatchandpointpairfeaturemethod AT zhuangzilong recognitionandgraspingofdisorderlystackedwoodplanksusingalocalimagepatchandpointpairfeaturemethod |