Cargando…

A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles

Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset threshol...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurzawa, Nils, Becher, Isabelle, Sridharan, Sindhuja, Franken, Holger, Mateus, André, Anders, Simon, Bantscheff, Marcus, Huber, Wolfgang, Savitski, Mikhail M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666118/
https://www.ncbi.nlm.nih.gov/pubmed/33188197
http://dx.doi.org/10.1038/s41467-020-19529-8
_version_ 1783610070483861504
author Kurzawa, Nils
Becher, Isabelle
Sridharan, Sindhuja
Franken, Holger
Mateus, André
Anders, Simon
Bantscheff, Marcus
Huber, Wolfgang
Savitski, Mikhail M.
author_facet Kurzawa, Nils
Becher, Isabelle
Sridharan, Sindhuja
Franken, Holger
Mateus, André
Anders, Simon
Bantscheff, Marcus
Huber, Wolfgang
Savitski, Mikhail M.
author_sort Kurzawa, Nils
collection PubMed
description Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our method will facilitate prioritizing targets from thermal profiling experiments.
format Online
Article
Text
id pubmed-7666118
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76661182020-11-17 A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles Kurzawa, Nils Becher, Isabelle Sridharan, Sindhuja Franken, Holger Mateus, André Anders, Simon Bantscheff, Marcus Huber, Wolfgang Savitski, Mikhail M. Nat Commun Article Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our method will facilitate prioritizing targets from thermal profiling experiments. Nature Publishing Group UK 2020-11-13 /pmc/articles/PMC7666118/ /pubmed/33188197 http://dx.doi.org/10.1038/s41467-020-19529-8 Text en © The Author(s) 2020, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kurzawa, Nils
Becher, Isabelle
Sridharan, Sindhuja
Franken, Holger
Mateus, André
Anders, Simon
Bantscheff, Marcus
Huber, Wolfgang
Savitski, Mikhail M.
A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title_full A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title_fullStr A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title_full_unstemmed A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title_short A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
title_sort computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666118/
https://www.ncbi.nlm.nih.gov/pubmed/33188197
http://dx.doi.org/10.1038/s41467-020-19529-8
work_keys_str_mv AT kurzawanils acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT becherisabelle acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT sridharansindhuja acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT frankenholger acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT mateusandre acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT anderssimon acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT bantscheffmarcus acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT huberwolfgang acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT savitskimikhailm acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT kurzawanils computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT becherisabelle computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT sridharansindhuja computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT frankenholger computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT mateusandre computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT anderssimon computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT bantscheffmarcus computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT huberwolfgang computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles
AT savitskimikhailm computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles