Cargando…
A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset threshol...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666118/ https://www.ncbi.nlm.nih.gov/pubmed/33188197 http://dx.doi.org/10.1038/s41467-020-19529-8 |
_version_ | 1783610070483861504 |
---|---|
author | Kurzawa, Nils Becher, Isabelle Sridharan, Sindhuja Franken, Holger Mateus, André Anders, Simon Bantscheff, Marcus Huber, Wolfgang Savitski, Mikhail M. |
author_facet | Kurzawa, Nils Becher, Isabelle Sridharan, Sindhuja Franken, Holger Mateus, André Anders, Simon Bantscheff, Marcus Huber, Wolfgang Savitski, Mikhail M. |
author_sort | Kurzawa, Nils |
collection | PubMed |
description | Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our method will facilitate prioritizing targets from thermal profiling experiments. |
format | Online Article Text |
id | pubmed-7666118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-76661182020-11-17 A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles Kurzawa, Nils Becher, Isabelle Sridharan, Sindhuja Franken, Holger Mateus, André Anders, Simon Bantscheff, Marcus Huber, Wolfgang Savitski, Mikhail M. Nat Commun Article Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our method will facilitate prioritizing targets from thermal profiling experiments. Nature Publishing Group UK 2020-11-13 /pmc/articles/PMC7666118/ /pubmed/33188197 http://dx.doi.org/10.1038/s41467-020-19529-8 Text en © The Author(s) 2020, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kurzawa, Nils Becher, Isabelle Sridharan, Sindhuja Franken, Holger Mateus, André Anders, Simon Bantscheff, Marcus Huber, Wolfgang Savitski, Mikhail M. A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title | A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title_full | A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title_fullStr | A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title_full_unstemmed | A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title_short | A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
title_sort | computational method for detection of ligand-binding proteins from dose range thermal proteome profiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666118/ https://www.ncbi.nlm.nih.gov/pubmed/33188197 http://dx.doi.org/10.1038/s41467-020-19529-8 |
work_keys_str_mv | AT kurzawanils acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT becherisabelle acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT sridharansindhuja acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT frankenholger acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT mateusandre acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT anderssimon acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT bantscheffmarcus acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT huberwolfgang acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT savitskimikhailm acomputationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT kurzawanils computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT becherisabelle computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT sridharansindhuja computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT frankenholger computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT mateusandre computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT anderssimon computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT bantscheffmarcus computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT huberwolfgang computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles AT savitskimikhailm computationalmethodfordetectionofligandbindingproteinsfromdoserangethermalproteomeprofiles |