Cargando…
Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators
The mineral‐bone axis is tightly regulated and dependent on renal function. In chronic kidney disease (CKD) progressive loss of renal capacity disrupts this axis over‐time, with marked changes in circulating calcium, phosphate, PTH, and fibroblast growth factor‐23 (FGF‐23). These changes contribute...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666773/ https://www.ncbi.nlm.nih.gov/pubmed/33190417 http://dx.doi.org/10.14814/phy2.14626 |
_version_ | 1783610196457684992 |
---|---|
author | Svajger, Bruno A. Riddoch, Justin L. H. Pruss, Cynthia M. Laverty, Kimberly J. Ward, Emilie Holden, Rachel M. Adams, Michael A. |
author_facet | Svajger, Bruno A. Riddoch, Justin L. H. Pruss, Cynthia M. Laverty, Kimberly J. Ward, Emilie Holden, Rachel M. Adams, Michael A. |
author_sort | Svajger, Bruno A. |
collection | PubMed |
description | The mineral‐bone axis is tightly regulated and dependent on renal function. In chronic kidney disease (CKD) progressive loss of renal capacity disrupts this axis over‐time, with marked changes in circulating calcium, phosphate, PTH, and fibroblast growth factor‐23 (FGF‐23). These changes contribute to the development of cardiovascular disease, like vascular calcification (VC), which worsens morbidity and mortality in CKD. Although the chronic changes in these circulating factors and their relationships are well known, no experimental studies have examined how the progressive development of CKD and VC alter the circadian rhythms of these factors. An adenine‐induced experimental model of CKD in rats was used to establish (i) general circulating trends, (ii) if renal dysfunction affects these observed trends, and (iii) identify potential changes in these trends caused by VC. This study clearly discerned patterns of daily variations in circulating minerals and hormones, finding that both phosphate and PTH follow modelable diurnal variations whereas calcium and FGF‐23 maintain relative stability over 24‐hr. Surprisingly, the development of CKD was not sufficient to disrupt these patterns of diurnal variation and only altered the magnitude of change; however, it was found that the diurnal rhythms of circulating phosphate and daily stability of calcium were only significantly altered in the setting of CKD with established VC. |
format | Online Article Text |
id | pubmed-7666773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76667732020-11-20 Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators Svajger, Bruno A. Riddoch, Justin L. H. Pruss, Cynthia M. Laverty, Kimberly J. Ward, Emilie Holden, Rachel M. Adams, Michael A. Physiol Rep Original Research The mineral‐bone axis is tightly regulated and dependent on renal function. In chronic kidney disease (CKD) progressive loss of renal capacity disrupts this axis over‐time, with marked changes in circulating calcium, phosphate, PTH, and fibroblast growth factor‐23 (FGF‐23). These changes contribute to the development of cardiovascular disease, like vascular calcification (VC), which worsens morbidity and mortality in CKD. Although the chronic changes in these circulating factors and their relationships are well known, no experimental studies have examined how the progressive development of CKD and VC alter the circadian rhythms of these factors. An adenine‐induced experimental model of CKD in rats was used to establish (i) general circulating trends, (ii) if renal dysfunction affects these observed trends, and (iii) identify potential changes in these trends caused by VC. This study clearly discerned patterns of daily variations in circulating minerals and hormones, finding that both phosphate and PTH follow modelable diurnal variations whereas calcium and FGF‐23 maintain relative stability over 24‐hr. Surprisingly, the development of CKD was not sufficient to disrupt these patterns of diurnal variation and only altered the magnitude of change; however, it was found that the diurnal rhythms of circulating phosphate and daily stability of calcium were only significantly altered in the setting of CKD with established VC. John Wiley and Sons Inc. 2020-11-15 /pmc/articles/PMC7666773/ /pubmed/33190417 http://dx.doi.org/10.14814/phy2.14626 Text en © 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Svajger, Bruno A. Riddoch, Justin L. H. Pruss, Cynthia M. Laverty, Kimberly J. Ward, Emilie Holden, Rachel M. Adams, Michael A. Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title | Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title_full | Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title_fullStr | Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title_full_unstemmed | Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title_short | Development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
title_sort | development of experimental chronic kidney disease and vascular calcification alters diurnal variation of phosphate and its hormonal regulators |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666773/ https://www.ncbi.nlm.nih.gov/pubmed/33190417 http://dx.doi.org/10.14814/phy2.14626 |
work_keys_str_mv | AT svajgerbrunoa developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT riddochjustinlh developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT prusscynthiam developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT lavertykimberlyj developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT wardemilie developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT holdenrachelm developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators AT adamsmichaela developmentofexperimentalchronickidneydiseaseandvascularcalcificationaltersdiurnalvariationofphosphateanditshormonalregulators |