Cargando…
A DNA methylation state transition model reveals the programmed epigenetic heterogeneity in human pre-implantation embryos
BACKGROUND: During mammalian early embryogenesis, expression and epigenetic heterogeneity emerge before the first cell fate determination, but the programs causing such determinate heterogeneity are largely unexplored. RESULTS: Here, we present MethylTransition, a novel DNA methylation state transit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667739/ https://www.ncbi.nlm.nih.gov/pubmed/33198783 http://dx.doi.org/10.1186/s13059-020-02189-8 |
Sumario: | BACKGROUND: During mammalian early embryogenesis, expression and epigenetic heterogeneity emerge before the first cell fate determination, but the programs causing such determinate heterogeneity are largely unexplored. RESULTS: Here, we present MethylTransition, a novel DNA methylation state transition model, for characterizing methylation changes during one or a few cell cycles at single-cell resolution. MethylTransition involves the creation of a transition matrix comprising three parameters that represent the probabilities of DNA methylation-modifying activities in order to link the methylation states before and after a cell cycle. We apply MethylTransition to single-cell DNA methylome data from human pre-implantation embryogenesis and elucidate that the DNA methylation heterogeneity that emerges at promoters during this process is largely an intrinsic output of a program with unique probabilities of DNA methylation-modifying activities. Moreover, we experimentally validate the effect of the initial DNA methylation on expression heterogeneity in pre-implantation mouse embryos. CONCLUSIONS: Our study reveals the programmed DNA methylation heterogeneity during human pre-implantation embryogenesis through a novel mathematical model and provides valuable clues for identifying the driving factors of the first cell fate determination during this process. SUPPLEMENTARY INFORMATION: Supplementary information accompanies this paper at 10.1186/s13059-020-02189-8. |
---|