Cargando…
Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668051/ https://www.ncbi.nlm.nih.gov/pubmed/33106416 http://dx.doi.org/10.1073/pnas.2000466117 |
_version_ | 1783610421969682432 |
---|---|
author | Flores-Costa, Roger Duran-Güell, Marta Casulleras, Mireia López-Vicario, Cristina Alcaraz-Quiles, José Diaz, Alba Lozano, Juan J. Titos, Esther Hall, Katherine Sarno, Renee Masferrer, Jaime L. Clària, Joan |
author_facet | Flores-Costa, Roger Duran-Güell, Marta Casulleras, Mireia López-Vicario, Cristina Alcaraz-Quiles, José Diaz, Alba Lozano, Juan J. Titos, Esther Hall, Katherine Sarno, Renee Masferrer, Jaime L. Clària, Joan |
author_sort | Flores-Costa, Roger |
collection | PubMed |
description | Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6C(High)- and higher Ly6C(Low)-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1β, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1β. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit. |
format | Online Article Text |
id | pubmed-7668051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-76680512020-11-27 Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit Flores-Costa, Roger Duran-Güell, Marta Casulleras, Mireia López-Vicario, Cristina Alcaraz-Quiles, José Diaz, Alba Lozano, Juan J. Titos, Esther Hall, Katherine Sarno, Renee Masferrer, Jaime L. Clària, Joan Proc Natl Acad Sci U S A Biological Sciences Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6C(High)- and higher Ly6C(Low)-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1β, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1β. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit. National Academy of Sciences 2020-11-10 2020-10-26 /pmc/articles/PMC7668051/ /pubmed/33106416 http://dx.doi.org/10.1073/pnas.2000466117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Flores-Costa, Roger Duran-Güell, Marta Casulleras, Mireia López-Vicario, Cristina Alcaraz-Quiles, José Diaz, Alba Lozano, Juan J. Titos, Esther Hall, Katherine Sarno, Renee Masferrer, Jaime L. Clària, Joan Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title | Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title_full | Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title_fullStr | Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title_full_unstemmed | Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title_short | Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit |
title_sort | stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a vasp/nf-κb/nlrp3 inflammasome circuit |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668051/ https://www.ncbi.nlm.nih.gov/pubmed/33106416 http://dx.doi.org/10.1073/pnas.2000466117 |
work_keys_str_mv | AT florescostaroger stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT duranguellmarta stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT casullerasmireia stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT lopezvicariocristina stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT alcarazquilesjose stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT diazalba stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT lozanojuanj stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT titosesther stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT hallkatherine stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT sarnorenee stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT masferrerjaimel stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit AT clariajoan stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit |