Cargando…

Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit

Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Flores-Costa, Roger, Duran-Güell, Marta, Casulleras, Mireia, López-Vicario, Cristina, Alcaraz-Quiles, José, Diaz, Alba, Lozano, Juan J., Titos, Esther, Hall, Katherine, Sarno, Renee, Masferrer, Jaime L., Clària, Joan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668051/
https://www.ncbi.nlm.nih.gov/pubmed/33106416
http://dx.doi.org/10.1073/pnas.2000466117
_version_ 1783610421969682432
author Flores-Costa, Roger
Duran-Güell, Marta
Casulleras, Mireia
López-Vicario, Cristina
Alcaraz-Quiles, José
Diaz, Alba
Lozano, Juan J.
Titos, Esther
Hall, Katherine
Sarno, Renee
Masferrer, Jaime L.
Clària, Joan
author_facet Flores-Costa, Roger
Duran-Güell, Marta
Casulleras, Mireia
López-Vicario, Cristina
Alcaraz-Quiles, José
Diaz, Alba
Lozano, Juan J.
Titos, Esther
Hall, Katherine
Sarno, Renee
Masferrer, Jaime L.
Clària, Joan
author_sort Flores-Costa, Roger
collection PubMed
description Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6C(High)- and higher Ly6C(Low)-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1β, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1β. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit.
format Online
Article
Text
id pubmed-7668051
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-76680512020-11-27 Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit Flores-Costa, Roger Duran-Güell, Marta Casulleras, Mireia López-Vicario, Cristina Alcaraz-Quiles, José Diaz, Alba Lozano, Juan J. Titos, Esther Hall, Katherine Sarno, Renee Masferrer, Jaime L. Clària, Joan Proc Natl Acad Sci U S A Biological Sciences Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3′,5′-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6C(High)- and higher Ly6C(Low)-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1β, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1β. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit. National Academy of Sciences 2020-11-10 2020-10-26 /pmc/articles/PMC7668051/ /pubmed/33106416 http://dx.doi.org/10.1073/pnas.2000466117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Flores-Costa, Roger
Duran-Güell, Marta
Casulleras, Mireia
López-Vicario, Cristina
Alcaraz-Quiles, José
Diaz, Alba
Lozano, Juan J.
Titos, Esther
Hall, Katherine
Sarno, Renee
Masferrer, Jaime L.
Clària, Joan
Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title_full Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title_fullStr Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title_full_unstemmed Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title_short Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit
title_sort stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a vasp/nf-κb/nlrp3 inflammasome circuit
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668051/
https://www.ncbi.nlm.nih.gov/pubmed/33106416
http://dx.doi.org/10.1073/pnas.2000466117
work_keys_str_mv AT florescostaroger stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT duranguellmarta stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT casullerasmireia stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT lopezvicariocristina stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT alcarazquilesjose stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT diazalba stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT lozanojuanj stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT titosesther stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT hallkatherine stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT sarnorenee stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT masferrerjaimel stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit
AT clariajoan stimulationofsolubleguanylatecyclaseexertsantiinflammatoryactionsintheliverthroughavaspnfkbnlrp3inflammasomecircuit