Cargando…
Evolution of regulatory signatures in primate cortical neurons at cell-type resolution
The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type–specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668098/ https://www.ncbi.nlm.nih.gov/pubmed/33109720 http://dx.doi.org/10.1073/pnas.2011884117 |
_version_ | 1783610429817225216 |
---|---|
author | Kozlenkov, Alexey Vermunt, Marit W. Apontes, Pasha Li, Junhao Hao, Ke Sherwood, Chet C. Hof, Patrick R. Ely, John J. Wegner, Michael Mukamel, Eran A. Creyghton, Menno P. Koonin, Eugene V. Dracheva, Stella |
author_facet | Kozlenkov, Alexey Vermunt, Marit W. Apontes, Pasha Li, Junhao Hao, Ke Sherwood, Chet C. Hof, Patrick R. Ely, John J. Wegner, Michael Mukamel, Eran A. Creyghton, Menno P. Koonin, Eugene V. Dracheva, Stella |
author_sort | Kozlenkov, Alexey |
collection | PubMed |
description | The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type–specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype–specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type–dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function. |
format | Online Article Text |
id | pubmed-7668098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-76680982020-11-27 Evolution of regulatory signatures in primate cortical neurons at cell-type resolution Kozlenkov, Alexey Vermunt, Marit W. Apontes, Pasha Li, Junhao Hao, Ke Sherwood, Chet C. Hof, Patrick R. Ely, John J. Wegner, Michael Mukamel, Eran A. Creyghton, Menno P. Koonin, Eugene V. Dracheva, Stella Proc Natl Acad Sci U S A Biological Sciences The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type–specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype–specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type–dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function. National Academy of Sciences 2020-11-10 2020-10-27 /pmc/articles/PMC7668098/ /pubmed/33109720 http://dx.doi.org/10.1073/pnas.2011884117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Kozlenkov, Alexey Vermunt, Marit W. Apontes, Pasha Li, Junhao Hao, Ke Sherwood, Chet C. Hof, Patrick R. Ely, John J. Wegner, Michael Mukamel, Eran A. Creyghton, Menno P. Koonin, Eugene V. Dracheva, Stella Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title | Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title_full | Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title_fullStr | Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title_full_unstemmed | Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title_short | Evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
title_sort | evolution of regulatory signatures in primate cortical neurons at cell-type resolution |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668098/ https://www.ncbi.nlm.nih.gov/pubmed/33109720 http://dx.doi.org/10.1073/pnas.2011884117 |
work_keys_str_mv | AT kozlenkovalexey evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT vermuntmaritw evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT apontespasha evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT lijunhao evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT haoke evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT sherwoodchetc evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT hofpatrickr evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT elyjohnj evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT wegnermichael evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT mukamelerana evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT creyghtonmennop evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT koonineugenev evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution AT drachevastella evolutionofregulatorysignaturesinprimatecorticalneuronsatcelltyperesolution |