Cargando…

Benchmarking and integrating genome-wide CRISPR off-target detection and prediction

Systematic evaluation of genome-wide Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) off-target profiles is a fundamental step for the successful application of the CRISPR system to clinical therapies. Many experimental techniques and in silico tools have been proposed for detecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Jifang, Xue, Dongyu, Chuai, Guohui, Gao, Yuli, Zhang, Gongchen, Liu, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672467/
https://www.ncbi.nlm.nih.gov/pubmed/33137817
http://dx.doi.org/10.1093/nar/gkaa930
Descripción
Sumario:Systematic evaluation of genome-wide Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) off-target profiles is a fundamental step for the successful application of the CRISPR system to clinical therapies. Many experimental techniques and in silico tools have been proposed for detecting and predicting genome-wide CRISPR off-target profiles. These techniques and tools, however, have not been systematically benchmarked. A comprehensive benchmark study and an integrated strategy that takes advantage of the currently available tools to improve predictions of genome-wide CRISPR off-target profiles are needed. We focused on the specificity of the traditional CRISPR SpCas9 system for gene knockout. First, we benchmarked 10 available genome-wide off-target cleavage site (OTS) detection techniques with the published OTS detection datasets. Second, taking the datasets generated from OTS detection techniques as the benchmark datasets, we benchmarked 17 available in silico genome-wide OTS prediction tools to evaluate their genome-wide CRISPR off-target prediction performances. Finally, we present the first one-stop integrated Genome-Wide Off-target cleavage Search platform (iGWOS) that was specifically designed for the optimal genome-wide OTS prediction by integrating the available OTS prediction algorithms with an AdaBoost ensemble framework.