Cargando…

Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters

Excitatory amino acid transporters (EAATs) harness [Na(+)], [K(+)], and [H(+)] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na(+) ions, [Na(+)] gradients are the predominant driving force for glutamate uptake. We combine...

Descripción completa

Detalles Bibliográficos
Autores principales: Alleva, C., Kovalev, K., Astashkin, R., Berndt, M. I., Baeken, C., Balandin, T., Gordeliy, V., Fahlke, Ch., Machtens, J.-P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673805/
https://www.ncbi.nlm.nih.gov/pubmed/33208356
http://dx.doi.org/10.1126/sciadv.aba9854
_version_ 1783611392512753664
author Alleva, C.
Kovalev, K.
Astashkin, R.
Berndt, M. I.
Baeken, C.
Balandin, T.
Gordeliy, V.
Fahlke, Ch.
Machtens, J.-P.
author_facet Alleva, C.
Kovalev, K.
Astashkin, R.
Berndt, M. I.
Baeken, C.
Balandin, T.
Gordeliy, V.
Fahlke, Ch.
Machtens, J.-P.
author_sort Alleva, C.
collection PubMed
description Excitatory amino acid transporters (EAATs) harness [Na(+)], [K(+)], and [H(+)] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na(+) ions, [Na(+)] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na(+):substrate coupling in the EAAT homolog Glt(Ph). A lipidic cubic phase x-ray crystal structure of wild-type, Na(+)-only bound Glt(Ph) at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na(+) ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na(+)-stabilized gate opening and electrostatic coupling of aspartate to Na(+) binding provides a constant Na(+):substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
format Online
Article
Text
id pubmed-7673805
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-76738052020-11-24 Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters Alleva, C. Kovalev, K. Astashkin, R. Berndt, M. I. Baeken, C. Balandin, T. Gordeliy, V. Fahlke, Ch. Machtens, J.-P. Sci Adv Research Articles Excitatory amino acid transporters (EAATs) harness [Na(+)], [K(+)], and [H(+)] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na(+) ions, [Na(+)] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na(+):substrate coupling in the EAAT homolog Glt(Ph). A lipidic cubic phase x-ray crystal structure of wild-type, Na(+)-only bound Glt(Ph) at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na(+) ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na(+)-stabilized gate opening and electrostatic coupling of aspartate to Na(+) binding provides a constant Na(+):substrate transport stoichiometry over a broad range of neurotransmitter concentrations. American Association for the Advancement of Science 2020-11-18 /pmc/articles/PMC7673805/ /pubmed/33208356 http://dx.doi.org/10.1126/sciadv.aba9854 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Alleva, C.
Kovalev, K.
Astashkin, R.
Berndt, M. I.
Baeken, C.
Balandin, T.
Gordeliy, V.
Fahlke, Ch.
Machtens, J.-P.
Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title_full Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title_fullStr Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title_full_unstemmed Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title_short Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
title_sort na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673805/
https://www.ncbi.nlm.nih.gov/pubmed/33208356
http://dx.doi.org/10.1126/sciadv.aba9854
work_keys_str_mv AT allevac nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT kovalevk nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT astashkinr nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT berndtmi nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT baekenc nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT balandint nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT gordeliyv nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT fahlkech nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters
AT machtensjp nadependentgatedynamicsandelectrostaticattractionensuresubstratecouplinginglutamatetransporters