Cargando…
TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. The Hippo signaling pathway regulates organ growth and cell proliferation. Herein, we demonstrate the regulatory m...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682393/ https://www.ncbi.nlm.nih.gov/pubmed/33122431 http://dx.doi.org/10.1073/pnas.2009334117 |
Sumario: | Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, primarily caused by germline mutation of PKD1 or PKD2, leading to end-stage renal disease. The Hippo signaling pathway regulates organ growth and cell proliferation. Herein, we demonstrate the regulatory mechanism of cystogenesis in ADPKD by transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling effector. TAZ was highly expressed around the renal cyst-lining epithelial cells of Pkd1-deficient mice. Loss of Taz in Pkd1-deficient mice reduced cyst formation. In wild type, TAZ interacted with PKD1, which inactivated β-catenin. In contrast, in PKD1-deficient cells, TAZ interacted with AXIN1, thus increasing β-catenin activity. Interaction of TAZ with AXIN1 in PKD1-deficient cells resulted in nuclear accumulation of TAZ together with β-catenin, which up-regulated c-MYC expression. Our findings suggest that the PKD1–TAZ–Wnt–β-catenin–c-MYC signaling axis plays a critical role in cystogenesis and might be a potential therapeutic target against ADPKD. |
---|