Cargando…

Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma

INTRODUCTION: Hypoxia and tumor-associated macrophage (TAM) are key regulators in remodeling the microenvironment of esophageal squamous cell carcinoma (ESCC). Hypoxia could stimulate tumor cells to secrete more exosomes and activate TAMs to M2 type. Here, we investigated the function and the underl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Qijue, Wang, Xinyu, Zhu, Ji, Fei, Xiang, Chen, Hezhong, Li, Chunguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682796/
https://www.ncbi.nlm.nih.gov/pubmed/33239890
http://dx.doi.org/10.2147/OTT.S284192
_version_ 1783612749916405760
author Lu, Qijue
Wang, Xinyu
Zhu, Ji
Fei, Xiang
Chen, Hezhong
Li, Chunguang
author_facet Lu, Qijue
Wang, Xinyu
Zhu, Ji
Fei, Xiang
Chen, Hezhong
Li, Chunguang
author_sort Lu, Qijue
collection PubMed
description INTRODUCTION: Hypoxia and tumor-associated macrophage (TAM) are key regulators in remodeling the microenvironment of esophageal squamous cell carcinoma (ESCC). Hypoxia could stimulate tumor cells to secrete more exosomes and activate TAMs to M2 type. Here, we investigated the function and the underlying mechanism of tumor-derived exosomal hsa-circ-0048117 in TAM polarization in ESCC. Collectively, these data indicate that PC cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, which then polarize macrophages to promote malignant behaviors of PC cells. METHODS: Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to analyze the physical characteristics of exosomes. High-throughput sequencing and bioinformatic analysis were performed to screen the potential exosomal circRNA. FISH, Ago2 RIP, pull-down and dual-luciferase reporter assay were conducted to figure out the correlation among hsa-circ-0048117, miR-140 and toll-like receptor 4 (TLR4). Flow cytometry and Western blot were used to evaluate their joint effect in macrophages polarization. Then, the invasion and migration ability were evaluated by transwell experiment. At last, serum exo-hsa-circ-0048117 in ESCC patients was compared and the correlation between its expression and T stage, N stage and TNM grades was analyzed. RESULTS: Hsa-circ-0048117 was significantly upregulated and enriched in exosomes secreted by hypoxia pre-challenged tumor cells and contributed to M2 macrophage polarization. Hsa-circ-0048117 depletion in macrophage led to inhibition of M2 polarization while restoration of hsa-circ-0048117 could rescue the process. Moreover, hsa-circ-0048117 could act as sponge of miR-140 by competing with TLR4 to facilitate the M2 macrophage polarization. Exo-hsa-circ-0048117 could be transmitted to macrophages to promote M2 polarization and M2 macrophages could enhance the ability of invasion and migration of tumor cells by secreting Arg1, IL-10 and TGF-β. Higher serum exo-hsa-circ-0048117 predicted an advanced T and N stage and positively correlated with TNM grade. CONCLUSION: Our findings indicated that ESCC cells generate hsa-circ-0048117-rich exosomes in a hypoxic microenvironment; hsa-circ-0048117 was believed to promote M2 macrophage polarization which favors the malignant behaviors of ESCC cells. These results reminded us that exosomal hsa-circ-0048117 may play a key role in remodeling the microenvironment and modulating progression in ESCC.
format Online
Article
Text
id pubmed-7682796
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-76827962020-11-24 Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma Lu, Qijue Wang, Xinyu Zhu, Ji Fei, Xiang Chen, Hezhong Li, Chunguang Onco Targets Ther Original Research INTRODUCTION: Hypoxia and tumor-associated macrophage (TAM) are key regulators in remodeling the microenvironment of esophageal squamous cell carcinoma (ESCC). Hypoxia could stimulate tumor cells to secrete more exosomes and activate TAMs to M2 type. Here, we investigated the function and the underlying mechanism of tumor-derived exosomal hsa-circ-0048117 in TAM polarization in ESCC. Collectively, these data indicate that PC cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, which then polarize macrophages to promote malignant behaviors of PC cells. METHODS: Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to analyze the physical characteristics of exosomes. High-throughput sequencing and bioinformatic analysis were performed to screen the potential exosomal circRNA. FISH, Ago2 RIP, pull-down and dual-luciferase reporter assay were conducted to figure out the correlation among hsa-circ-0048117, miR-140 and toll-like receptor 4 (TLR4). Flow cytometry and Western blot were used to evaluate their joint effect in macrophages polarization. Then, the invasion and migration ability were evaluated by transwell experiment. At last, serum exo-hsa-circ-0048117 in ESCC patients was compared and the correlation between its expression and T stage, N stage and TNM grades was analyzed. RESULTS: Hsa-circ-0048117 was significantly upregulated and enriched in exosomes secreted by hypoxia pre-challenged tumor cells and contributed to M2 macrophage polarization. Hsa-circ-0048117 depletion in macrophage led to inhibition of M2 polarization while restoration of hsa-circ-0048117 could rescue the process. Moreover, hsa-circ-0048117 could act as sponge of miR-140 by competing with TLR4 to facilitate the M2 macrophage polarization. Exo-hsa-circ-0048117 could be transmitted to macrophages to promote M2 polarization and M2 macrophages could enhance the ability of invasion and migration of tumor cells by secreting Arg1, IL-10 and TGF-β. Higher serum exo-hsa-circ-0048117 predicted an advanced T and N stage and positively correlated with TNM grade. CONCLUSION: Our findings indicated that ESCC cells generate hsa-circ-0048117-rich exosomes in a hypoxic microenvironment; hsa-circ-0048117 was believed to promote M2 macrophage polarization which favors the malignant behaviors of ESCC cells. These results reminded us that exosomal hsa-circ-0048117 may play a key role in remodeling the microenvironment and modulating progression in ESCC. Dove 2020-11-18 /pmc/articles/PMC7682796/ /pubmed/33239890 http://dx.doi.org/10.2147/OTT.S284192 Text en © 2020 Lu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Lu, Qijue
Wang, Xinyu
Zhu, Ji
Fei, Xiang
Chen, Hezhong
Li, Chunguang
Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title_full Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title_fullStr Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title_full_unstemmed Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title_short Hypoxic Tumor-Derived Exosomal Circ0048117 Facilitates M2 Macrophage Polarization Acting as miR-140 Sponge in Esophageal Squamous Cell Carcinoma
title_sort hypoxic tumor-derived exosomal circ0048117 facilitates m2 macrophage polarization acting as mir-140 sponge in esophageal squamous cell carcinoma
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7682796/
https://www.ncbi.nlm.nih.gov/pubmed/33239890
http://dx.doi.org/10.2147/OTT.S284192
work_keys_str_mv AT luqijue hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma
AT wangxinyu hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma
AT zhuji hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma
AT feixiang hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma
AT chenhezhong hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma
AT lichunguang hypoxictumorderivedexosomalcirc0048117facilitatesm2macrophagepolarizationactingasmir140spongeinesophagealsquamouscellcarcinoma