Cargando…
SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2
[Image: see text] Amino acid mutations that improve protein stability and rigidity can accompany increases in binding affinity. Therefore, conserved amino acids located on a protein surface may be successfully targeted by antibodies. The quantitative deep mutational scanning approach is an excellent...
Autores principales: | Izumi, Hiroshi, Nafie, Laurence A., Dukor, Rina K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687297/ https://www.ncbi.nlm.nih.gov/pubmed/33283104 http://dx.doi.org/10.1021/acsomega.0c04472 |
Ejemplares similares
-
Conformational Variability Correlation Prediction
of Transmissibility and Neutralization Escape Ability for Multiple
Mutation SARS-CoV-2 Strains using SSSCPreds
por: Izumi, Hiroshi, et al.
Publicado: (2021) -
Effect of Conformational
Variability on Seasonable
Thermal Stability and Cell Entry of Omicron Variants
por: Izumi, Hiroshi, et al.
Publicado: (2023) -
Is Supramolecular
Filament Chirality the Underlying
Cause of Major Morphology Differences in Amyloid Fibrils?
por: Kurouski, Dmitry, et al.
Publicado: (2014) -
Conformational flexibility and structural variability of SARS-CoV2 S protein
por: Pramanick, Ishika, et al.
Publicado: (2021) -
Predicting improved protein conformations with a temporal deep recurrent neural network
por: Pfeiffenberger, Erik, et al.
Publicado: (2018)