Cargando…
Dirty engineering data-driven inverse prediction machine learning model
Most data-driven machine learning (ML) approaches established in metallurgy research fields are focused on a build-up of reliable quantitative models that predict a material property from a given set of material conditions. In general, the input feature dimension (the number of material condition va...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687896/ https://www.ncbi.nlm.nih.gov/pubmed/33235286 http://dx.doi.org/10.1038/s41598-020-77575-0 |