Cargando…
Dirty engineering data-driven inverse prediction machine learning model
Most data-driven machine learning (ML) approaches established in metallurgy research fields are focused on a build-up of reliable quantitative models that predict a material property from a given set of material conditions. In general, the input feature dimension (the number of material condition va...
Autores principales: | Lee, Jin-Woong, Park, Woon Bae, Do Lee, Byung, Kim, Seonghwan, Goo, Nam Hoon, Sohn, Kee-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687896/ https://www.ncbi.nlm.nih.gov/pubmed/33235286 http://dx.doi.org/10.1038/s41598-020-77575-0 |
Ejemplares similares
-
A machine-learning-based alloy design platform that enables both forward and inverse predictions for thermo-mechanically controlled processed (TMCP) steel alloys
por: Lee, Jin-Woong, et al.
Publicado: (2021) -
Play dirty
por: Brown, Sandra, 1948-
Publicado: (2007) -
Dirty Money
por: de La Flèchere, H. F.
Publicado: (1923) -
Dirty Thermometers
Publicado: (1898) -
Argyrodite configuration determination for DFT and AIMD calculations using an integrated optimization strategy
por: Lee, Byung Do, et al.
Publicado: (2022)