Cargando…

Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems

To tackle real-world challenges, deep and complex neural networks are generally used with a massive number of parameters, which require large memory size, extensive computational operations, and high energy consumption in neuromorphic hardware systems. In this work, we propose an unsupervised online...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Wenzhe, Fouda, Mohammed E., Yantir, Hasan Erdem, Eltawil, Ahmed M., Salama, Khaled Nabil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689062/
https://www.ncbi.nlm.nih.gov/pubmed/33281549
http://dx.doi.org/10.3389/fnins.2020.598876