Cargando…
Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems
To tackle real-world challenges, deep and complex neural networks are generally used with a massive number of parameters, which require large memory size, extensive computational operations, and high energy consumption in neuromorphic hardware systems. In this work, we propose an unsupervised online...
Autores principales: | Guo, Wenzhe, Fouda, Mohammed E., Yantir, Hasan Erdem, Eltawil, Ahmed M., Salama, Khaled Nabil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689062/ https://www.ncbi.nlm.nih.gov/pubmed/33281549 http://dx.doi.org/10.3389/fnins.2020.598876 |
Ejemplares similares
-
Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
por: Guo, Wenzhe, et al.
Publicado: (2021) -
An Ultra-Area-Efficient 1024-Point In-Memory FFT Processor
por: Yantir, Hasan Erdem, et al.
Publicado: (2019) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Efficient Acceleration of Stencil Applications through In-Memory Computing
por: Yantır, Hasan Erdem, et al.
Publicado: (2020) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019)