Cargando…
Toward Developing Intuitive Rules for Protein Variant Effect Prediction Using Deep Mutational Scanning Data
[Image: see text] Protein structure and function can be severely altered by even a single amino acid mutation. Predictions of mutational effects using extensive artificial intelligence (AI)-based models, although accurate, remain as enigmatic as the experimental observations in terms of improving in...
Autores principales: | Sruthi, Cheloor Kovilakam, Balaram, Hemalatha, Prakash, Meher K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689672/ https://www.ncbi.nlm.nih.gov/pubmed/33251402 http://dx.doi.org/10.1021/acsomega.0c02402 |
Ejemplares similares
-
Deep2Full: Evaluating strategies for selecting the minimal mutational experiments for optimal computational predictions of deep mutational scan outcomes
por: Sruthi, C. K., et al.
Publicado: (2020) -
S121: MULTIPARAMETER PREDICTION OF MYELOID NEOPLASIA RISK
por: Gu, Muxin, et al.
Publicado: (2023) -
P442: DDX41 GERMLINE VARIANTS: POPULATION PREVALENCE, SIGNIFICANCE AND LEUKEMIC EVOLUTION
por: Cheloor Kovilakam, Sruthi, et al.
Publicado: (2023) -
Multiparameter prediction of myeloid neoplasia risk
por: Gu, Muxin, et al.
Publicado: (2023) -
Author Correction: Multiparameter prediction of myeloid neoplasia risk
por: Gu, Muxin, et al.
Publicado: (2023)