Cargando…
Activation of p38 MAPK participates in the sulbactam-induced cerebral ischemic tolerance mediated by glial glutamate transporter-1 upregulation in rats
Our previous studies have shown that sulbactam can play a neuroprotection role in hippocampal neurons by upregulating the expression and function of glial glutamate transporter-1 (GLT-1) during ischemic insult. Here, using rat global cerebral ischemia model, we studied in vivo the role of p38 mitoge...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692545/ https://www.ncbi.nlm.nih.gov/pubmed/33244020 http://dx.doi.org/10.1038/s41598-020-77583-0 |
Sumario: | Our previous studies have shown that sulbactam can play a neuroprotection role in hippocampal neurons by upregulating the expression and function of glial glutamate transporter-1 (GLT-1) during ischemic insult. Here, using rat global cerebral ischemia model, we studied in vivo the role of p38 mitogen-activated protein kinases (MAPK) in the sulbactam-induced GLT-1 upregulation and neuroprotection against ischemia. The hippocampal CA1 field was selected as observing target. The expressions of phosphorylated-p38 MAPK and GLT-1 were assayed with western blot analysis and immunohistochemistry. The condition of delayed neuronal death (DND) was assayed with neuropathological evaluation under thionin staining. It was shown that administration of sulbactam protected CA1 hippocampal neurons against ischemic insult accompanied with significantly upregulation in the expressions of phosphorylated-p38 MAPK and GLT-1. The time course analysis showed that sulbactam activated p38 MAPK before the GLT-1 upregulation in either normal or global cerebral ischemic rats. Furthermore, inhibiting p38 MAPK activation by SB203580 blocked the GLT-1 upregulation and neuroprotection induced by sulbactam. The above results suggested that p38 MAPK, at least partly, participated in the sulbactam-induced brain tolerance to ischemia mediated by GLT-1 upregulation in rats. |
---|