Cargando…

JSRV Intragenic Enhancer Element Increases Expression from a Heterologous Promoter and Promotes High Level AAV-Mediated Transgene Expression in the Lung and Liver of Mice

Jaagsiekte sheep retrovirus (JSRV) induces tumors in the distal airways of sheep and goats. A putative intragenic enhancer, termed JE, localized to the 3′ end of the JSRV env gene, has been previously described. Herein we provide further evidence that the JE functions as a transcriptional enhancer,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Darrick L., Chow, Natalie, Wootton, Sarah K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694761/
https://www.ncbi.nlm.nih.gov/pubmed/33172105
http://dx.doi.org/10.3390/v12111266
Descripción
Sumario:Jaagsiekte sheep retrovirus (JSRV) induces tumors in the distal airways of sheep and goats. A putative intragenic enhancer, termed JE, localized to the 3′ end of the JSRV env gene, has been previously described. Herein we provide further evidence that the JE functions as a transcriptional enhancer, as it was able to enhance gene expression when placed in either forward or reverse orientation when combined with a heterologous chicken beta actin promoter. We then generated novel composite promoters designed to improve transgene expression from adeno-associated virus (AAV) gene therapy vectors. A hybrid promoter consisting of the shortest JE sequence examined (JE71), the U3 region of the JSRV long terminal repeat (LTR), and the chicken beta actin promoter, demonstrated robust expression in vitro and in vivo, when in the context of AAV vectors. AAV-mediated transgene expression in vivo from the hybrid promoter was marginally lower than that observed for AAV vectors encoding the strong CAG promoter, but greatly reduced in the heart, making this promoter/enhancer combination attractive for non-cardiac applications, particularly respiratory tract or liver directed therapies. Replacement of the murine leukemia virus intron present in the original vector construct with a modified SV40 intron reduced the promoter/enhancer/intron cassette size to 719 bp, leaving an additional ~4 kb of coding capacity when packaged within an AAV vector. Taken together, we have developed a novel, compact promoter that is capable of directing high level transgene expression from AAV vectors in both the liver and lung with diminished transgene expression in the heart.