Cargando…

Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible

The classical motor symptoms of Parkinson’s disease (PD) are caused by degeneration of dopaminergic neurons in the substantia nigra, which is followed by secondary dendritic pruning and spine loss at striatal medium spiny neurons (MSN). We hypothesize that these morphological changes at MSN underlie...

Descripción completa

Detalles Bibliográficos
Autores principales: Witzig, Victoria Sofie, Komnig, Daniel, Falkenburger, Björn H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695336/
https://www.ncbi.nlm.nih.gov/pubmed/33182316
http://dx.doi.org/10.3390/cells9112441
_version_ 1783615165755817984
author Witzig, Victoria Sofie
Komnig, Daniel
Falkenburger, Björn H.
author_facet Witzig, Victoria Sofie
Komnig, Daniel
Falkenburger, Björn H.
author_sort Witzig, Victoria Sofie
collection PubMed
description The classical motor symptoms of Parkinson’s disease (PD) are caused by degeneration of dopaminergic neurons in the substantia nigra, which is followed by secondary dendritic pruning and spine loss at striatal medium spiny neurons (MSN). We hypothesize that these morphological changes at MSN underlie at least in part long-term motor complications in PD patients. In order to define the potential benefits and limitations of dopamine substitution, we tested in a mouse model whether dendritic pruning and spine loss can be reversible when dopaminergic axon terminals regenerate. In order to induce degeneration of nigrostriatal dopaminergic neurons we used the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice; 30 mg/kg MPTP was applied i.p. on five consecutive days. In order to assess the consequences of dopamine depletion, mice were analyzed 21 days after the last injection. In order to test reversibility of MSN changes we exploited the property of this model that striatal axon terminals regenerate by sprouting within 90 days and analyzed a second cohort 90 days after MPTP. Degeneration of dopaminergic neurons was confirmed by counting TH-positive neurons in the substantia nigra and by analyzing striatal catecholamines. Striatal catecholamine recovered 90 days after MPTP. MSN morphology was visualized by Golgi staining and quantified as total dendritic length, number of dendritic branch points, and density of dendritic spines. All morphological parameters of striatal MSN were reduced 21 days after MPTP. Statistical analysis indicated that dendritic pruning and the reduction of spine density represent two distinct responses to dopamine depletion. Ninety days after MPTP, all morphological changes recovered. Our findings demonstrate that morphological changes in striatal MSN resulting from dopamine depletion are reversible. They suggest that under optimal conditions, symptomatic dopaminergic therapy might be able to prevent maladaptive plasticity and long-term motor complications in PD patients.
format Online
Article
Text
id pubmed-7695336
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76953362020-11-28 Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible Witzig, Victoria Sofie Komnig, Daniel Falkenburger, Björn H. Cells Article The classical motor symptoms of Parkinson’s disease (PD) are caused by degeneration of dopaminergic neurons in the substantia nigra, which is followed by secondary dendritic pruning and spine loss at striatal medium spiny neurons (MSN). We hypothesize that these morphological changes at MSN underlie at least in part long-term motor complications in PD patients. In order to define the potential benefits and limitations of dopamine substitution, we tested in a mouse model whether dendritic pruning and spine loss can be reversible when dopaminergic axon terminals regenerate. In order to induce degeneration of nigrostriatal dopaminergic neurons we used the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice; 30 mg/kg MPTP was applied i.p. on five consecutive days. In order to assess the consequences of dopamine depletion, mice were analyzed 21 days after the last injection. In order to test reversibility of MSN changes we exploited the property of this model that striatal axon terminals regenerate by sprouting within 90 days and analyzed a second cohort 90 days after MPTP. Degeneration of dopaminergic neurons was confirmed by counting TH-positive neurons in the substantia nigra and by analyzing striatal catecholamines. Striatal catecholamine recovered 90 days after MPTP. MSN morphology was visualized by Golgi staining and quantified as total dendritic length, number of dendritic branch points, and density of dendritic spines. All morphological parameters of striatal MSN were reduced 21 days after MPTP. Statistical analysis indicated that dendritic pruning and the reduction of spine density represent two distinct responses to dopamine depletion. Ninety days after MPTP, all morphological changes recovered. Our findings demonstrate that morphological changes in striatal MSN resulting from dopamine depletion are reversible. They suggest that under optimal conditions, symptomatic dopaminergic therapy might be able to prevent maladaptive plasticity and long-term motor complications in PD patients. MDPI 2020-11-09 /pmc/articles/PMC7695336/ /pubmed/33182316 http://dx.doi.org/10.3390/cells9112441 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Witzig, Victoria Sofie
Komnig, Daniel
Falkenburger, Björn H.
Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title_full Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title_fullStr Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title_full_unstemmed Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title_short Changes in Striatal Medium Spiny Neuron Morphology Resulting from Dopamine Depletion Are Reversible
title_sort changes in striatal medium spiny neuron morphology resulting from dopamine depletion are reversible
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695336/
https://www.ncbi.nlm.nih.gov/pubmed/33182316
http://dx.doi.org/10.3390/cells9112441
work_keys_str_mv AT witzigvictoriasofie changesinstriatalmediumspinyneuronmorphologyresultingfromdopaminedepletionarereversible
AT komnigdaniel changesinstriatalmediumspinyneuronmorphologyresultingfromdopaminedepletionarereversible
AT falkenburgerbjornh changesinstriatalmediumspinyneuronmorphologyresultingfromdopaminedepletionarereversible